Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Many deepfake-image forensic detectors have been proposed and improved due to the development of synthetic techniques. However, recent studies show that most of these detectors are not immune to adversarial example attacks. Therefore, understanding the impact of adversarial examples on their performance is an important step towards improving deepfake-image detectors. This study developed an anti-forensics case study of two popular general deepfake detectors based on their accuracy and generalization. Herein, we propose the Poisson noise DeepFool (PNDF), an improved iterative adversarial examples generation method. This method can simply and effectively attack forensics detectors by adding perturbations to images in different directions. Our attacks can reduce its AUC from 0.9999 to 0.0331, and the detection accuracy of deepfake images from 0.9997 to 0.0731. Compared with state-of-the-art studies, our work provides an important defense direction for future research on deepfake-image detectors, by focusing on the generalization performance of detectors and their resistance to adversarial example attacks.

Details

Title
Deepfake-Image Anti-Forensics with Adversarial Examples Attacks
Author
Li, Fan 1   VIAFID ORCID Logo  ; Li, Wei 2   VIAFID ORCID Logo  ; Cui, Xiaohui 1   VIAFID ORCID Logo 

 Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan 430040, China; [email protected] 
 School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214000, China; [email protected] 
First page
288
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602055041
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.