Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a deep neural network (DNN)-based method for predicting ore production by truck-haulage systems in open-pit mines. The proposed method utilizes two DNN models that are designed to predict ore production during the morning and afternoon haulage sessions, respectively. The configuration of the input nodes of the DNN models is based on truck-haulage conditions and corresponding operation times. To verify the efficacy of the proposed method, training data for the DNN models were generated by processing packet data collected over the two-month period December 2018 to January 2019. Subsequently, following training under different hidden-layer conditions, it was observed that the prediction accuracy of morning ore production was highest when the number of hidden layers and number of corresponding nodes were four and 50, respectively. The corresponding values of the determination coefficient and mean absolute percentage error (MAPE) were 0.99% and 4.78%, respectively. Further, the prediction accuracy of afternoon ore production was highest when the number of hidden layers was four and the corresponding number of nodes was 50. This yielded determination coefficient and MAPE values of 0.99% and 5.26%, respectively.

Details

Title
Deep Neural Network for Predicting Ore Production by Truck-Haulage Systems in Open-Pit Mines
Author
Baek, Jieun  VIAFID ORCID Logo  ; Choi, Yosoon  VIAFID ORCID Logo 
First page
1657
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2372387998
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.