Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Condition monitoring is a part of the predictive maintenance approach applied to detect and prevent unexpected equipment failures by monitoring machine conditions. Early detection of equipment failures in industrial systems can greatly reduce scrap and financial losses. Developed sensor data acquisition technologies allow for digitally generating and storing many types of sensor data. Data-driven computational models allow the extraction of information about the machine’s state from acquired sensor data. The outstanding generalization capabilities of deep learning models have enabled them to play a significant role as a data-driven computational fault model in equipment condition monitoring. A challenge of fault detection applications is that single-sensor data can be insufficient in performance to detect equipment anomalies. Furthermore, data in different domains can reveal more prominent features depending on the fault type, but may not always be obvious. To address this issue, this paper proposes a multi-modal sensor fusion-based deep learning model to detect equipment faults by fusing information not only from different sensors but also from different signal domains. The effectiveness of the model’s fault detection capability is shown by utilizing the most commonly encountered equipment types in the industry, such as electric motors. Two different sensor types’ raw time domain and frequency domain data are utilized. The raw data from the vibration and current sensors are transformed into time-frequency images using short-time Fourier transform (STFT). Then, time-frequency images and raw time series data were supplied to the designed deep learning model to detect failures. The results showed that the fusion of multi-modal sensor data using the proposed model can be advantageous in equipment fault detection.

Details

Title
A Deep-Learning-Based Multi-Modal Sensor Fusion Approach for Detection of Equipment Faults
Author
Kullu, Omer 1 ; Cinar, Eyup 2   VIAFID ORCID Logo 

 Anadolu Sigorta, Beykoz, 34805 Istanbul, Turkey; Computer Engineering Department, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey 
 Computer Engineering Department, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Center for Intelligent Systems Applications Research (CISAR), 26040 Eskisehir, Turkey 
First page
1105
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748306314
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.