Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With multiple principal components, high entropy alloys (HEAs) have aroused great interest due to their unique microstructures and outstanding properties. Recently, the corrosion behavior of HEAs has become a scientific hotspot in the area of material science and engineering, and HEAs can exhibit good protection against corrosive environments. A comprehensive understanding of the corrosion mechanism of HEAs is important for further design of HEAs with better performance. This paper reviews the corrosion properties and mechanisms of HEAs (mainly Cantor alloy and its variants) in various environments. More crucially, this paper is focused on the influences of composition and microstructure on the evolution of the corrosion process, especially passive film stability and localized corrosion resistance. The corrosion behavior of HEAs as structural materials in nuclear industry applications is emphasized. Finally, based on this review, the possible perspectives for scientific research and engineering applications of HEAs are proposed.

Details

Title
Corrosion Behavior of High Entropy Alloys and Their Application in the Nuclear Industry—An Overview
Author
Li, Tianrun 1 ; Wang, Debin 1   VIAFID ORCID Logo  ; Zhang, Suode 2 ; Wang, Jianqiang 2 

 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 
 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 
First page
363
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779590263
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.