It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Conducting thermal safety research on solid rocket motors is a method to effectively improve the battlefield survivability of rockets and missile weapons. Based on the AP-based cock-off reaction mechanism, a 2-D unsteady axial symmetrical model of solid rocket motor is developed. The software Fluent is used to calculate the numerical value of the rocket motor under thermal stimulation conditions of different heating rates. The results indicate that the heating rate of cook-off is negatively correlated with the ignition delay time of the motor, and there is no significant connection between ignition temperature and heating rate. But it is obvious that heating rate has a big impact on ignition position. In the slow cook-off numerical calculation, the initial ignition position appears near the propellant head. And the higher the heating rate, the closer the ignition position is to the propellant head. At rapid heating rate of 1.45K/s, the ignition position appears at the edge of the left end face of the propellant. When rapid heating rate is 1.75K/s or 1.95K/s, ignition position appears at the edge of the right end face of the propellant. At this time, the ignition position will change abruptly.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Energy and Power Engineering, Nanjing University of Science and Technology , Nanjing, 210094 , China