Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Owing to their high accuracy, deep convolutional neural networks (CNNs) are extensively used. However, they are characterized by high complexity. Real-time performance and acceleration are required in current CNN systems. A graphics processing unit (GPU) is one possible solution to improve real-time performance; however, its power consumption ratio is poor owing to high power consumption. By contrast, field-programmable gate arrays (FPGAs) have lower power consumption and flexible architecture, making them more suitable for CNN implementation. In this study, we propose a method that offers both the speed of CNNs and the power and parallelism of FPGAs. This solution relies on two primary acceleration techniques—parallel processing of layer resources and pipelining within specific layers. Moreover, a new method is introduced for exchanging domain requirements for speed and design time by implementing an automatic parallel hardware–software co-design CNN using the software-defined system-on-chip tool. We evaluated the proposed method using five networks—MobileNetV1, ShuffleNetV2, SqueezeNet, ResNet-50, and VGG-16—and FPGA processors—ZCU102. We experimentally demonstrated that our design has a higher speed-up than the conventional implementation method. The proposed method achieves 2.47×, 1.93×, and 2.16× speed-up on the ZCU102 for MobileNetV1, ShuffleNetV2, and SqueezeNet, respectively.

Details

Title
Convolutional Neural Network Model Compression Method for Software—Hardware Co-Design
Author
Jang, Seojin 1   VIAFID ORCID Logo  ; Liu, Wei 2 ; Cho, Yongbeom 3   VIAFID ORCID Logo 

 Department of Electrical and Electronics Engineering, Konkuk University, Seoul 05029, Korea 
 Deep ET, Seoul 05029, Korea 
 Department of Electrical and Electronics Engineering, Konkuk University, Seoul 05029, Korea; Deep ET, Seoul 05029, Korea 
First page
451
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728486885
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.