Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A comparison of leafy green plant species’ (lettuce (Lactuca sativa L.), dill (Anethum graveolens L.), rocket (Eruca sativa), coriander (Coriandrum sativum L.), and parsley (Petroselinum crispum)) growth rates was performed between an Nutrient Film Technique (NFT)hydroponic system, using standard commercial nutrient solution, and an NFT aquaponic system, using fish waste from Grass Carp, (Ctenopharyngodon idella) which provided the majority of the nutrients required by the plants. The results demonstrated that the aquaponic method performed well, and, in many cases, the growth rates produced were similar to those of the hydroponic method. Lettuce growth was compared across three seasons (summer, winter, and spring), and, in all cases, the aquaponically-grown lettuce equalled, or bettered, the hydroponic equivalent. Herb growth was compared over a five-month period (February to June—summer/autumn), and in 17 out of 23 comparisons, the aquaponic method produced results similar to those of the hydroponic method. Thus, while the NFT method may not be the most appropriate technical approach for aquaponic integration, the results suggest that the overall aquaponic method has the potential to produce plant growth rates at least equal to those of standard hydroponics.

Details

Title
A Comparison of Plant Growth Rates between an NFT Hydroponic System and an NFT Aquaponic System
Author
Ward, James
First page
27
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
23117524
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548450160
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.