It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The important task of radiotherapy is to make sure that the radiation dose to the target tumour is accurate as prescribed and the dose to the organ at risk is minimized. Therefore, the aim of this study is to compare and evaluate the efficiency of the dose calculation algorithms: namely convolution, superposition, and fast superposition which installed in Treatment Planning System (TPS) (CMS XiO, USA). In this study, we modified protocols described in IAEATecdoc-1583, where four typical treatment techniques such as single field, multiple field, wedge field, and multi-leaf collimated (MLC) field were analysed from the system. The measurement data for calculated dose and measured dose were taken from thorax CIRS anthropomorphic phantom. The assessment of algorithms was done by comparing the point dose calculated with the measured dose. The study shows that the superposition algorithm produced relative error less than ± 3% which passed 100% of all reference points, whilst the convolution algorithm and fast superposition presented relative error more than ± 3% which passed 82% and 91% of reference points, respectively. In conclusion, the evaluation of radiotherapy treatment plan shall take into account the type of dose calculation algorithm model in order to optimize radiotherapy treatment and ensure the radiation safety to the patient.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Radiology, Hospital Sultanah Aminah, 80100 Johor Bharu, MALAYSIA; Department of Oncology, Institut Kanser Negara, 62590 Putrajaya, MALAYSIA
2 Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, MALAYSIA
3 Bahagian Kawalselia Radiasi Perubatan Kementerian Kesihatan Malaysia, 62590 Putrajaya, MALAYSIA