Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Transformers are models that implement a mechanism of self-attention, individually weighting the importance of each part of the input data. Their use in image classification tasks is still somewhat limited since researchers have so far chosen Convolutional Neural Networks for image classification and transformers were more targeted to Natural Language Processing (NLP) tasks. Therefore, this paper presents a literature review that shows the differences between Vision Transformers (ViT) and Convolutional Neural Networks. The state of the art that used the two architectures for image classification was reviewed and an attempt was made to understand what factors may influence the performance of the two deep learning architectures based on the datasets used, image size, number of target classes (for the classification problems), hardware, and evaluated architectures and top results. The objective of this work is to identify which of the architectures is the best for image classification and under what conditions. This paper also describes the importance of the Multi-Head Attention mechanism for improving the performance of ViT in image classification.

Details

Title
Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review
Author
Maurício, José  VIAFID ORCID Logo  ; Domingues, Inês  VIAFID ORCID Logo  ; Bernardino, Jorge  VIAFID ORCID Logo 
First page
5521
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812407049
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.