It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An investigation on the droplet characteristics of ethanol in small-scale combustors with two different systems was conducted experimentally and theoretically. The classical capillary-mesh electrode arrangement was applied in Type A electrospray system, and for Type B, an additional ring electrode is included. The droplet size and velocity were measured by a Phase Doppler Anemometer. The electric filed intensity was theoretically calculated in the two electrospray systems. Compared with Type A, Type B system has smaller droplet size and velocity in the same spraying mode. Meanwhile the electrospray process in Type B system is more stable than that in Type A with its smaller root mean square velocity. By measuring the spraying current, the average specific charge of the droplets for the two systems was obtained in different spraying modes. And it was found that the addition of the ring electrode can help to increase the droplet charge, which is the fundamental reason for Type B electrospray system to perform better. The corona charge of the droplets was theoretically calculated for the two electrospray systems. It was found that the calculated specific charge generated by corona charging was in good agreement with the experimental results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 School of Electric Power, South China University of Technology, Guangzhou, China
2 Teaching and Training Center for Engineering Basis, South China Agricultural University, Guangzhou, China
3 Fluids & Thermal Engineering Group, Faculty of Engineering, The University of Nottingham, University Park, Nottingham, UK
4 Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing, China