Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the last twenty years, due to an increasing medical and market demand for orthopaedic implants, several grafting options have been developed. However, when alternative bone augmentation materials mimicking autografts are searched on the market, commercially available products may be grouped into three main categories: cellular bone matrices, growth factor enhanced bone grafts, and peptide enhanced xeno-hybrid bone grafts. Firstly, to obtain data for this review, the search engines Google and Bing were employed to acquire information from reports or website portfolios of important competitors in the global bone graft market. Secondly, bibliographic databases such as Medline/PubMed, Web of Science, and Scopus were also employed to analyse data from preclinical/clinical studies performed to evaluate the safety and efficacy of each product released on the market. Here, we discuss several products in terms of osteogenic/osteoinductive/osteoconductive properties, safety, efficacy, and side effects, as well as regulatory issues and costs. Although both positive and negative results were reported in clinical applications for each class of products, to date, peptide enhanced xeno-hybrid bone grafts may represent the best choice in terms of risk/benefit ratio. Nevertheless, more prospective and controlled studies are needed before approval for routine clinical use.

Details

Title
Commercial Bone Grafts Claimed as an Alternative to Autografts: Current Trends for Clinical Applications in Orthopaedics
Author
Govoni, Marco 1   VIAFID ORCID Logo  ; Vivarelli, Leonardo 1   VIAFID ORCID Logo  ; Mazzotta, Alessandro 1 ; Stagni, Cesare 1 ; Maso, Alessandra 2 ; Dallari, Dante 1   VIAFID ORCID Logo 

 Reconstructive Orthopaedic Surgery and Innovative Techniques-Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; [email protected] (A.M.); [email protected] (C.S.); [email protected] (D.D.) 
 Laboratory of Microbiology and GMP Quality Control, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; [email protected] 
First page
3290
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545005502
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.