It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Estrogen receptor alpha (ERα/ESR1) is overexpressed in over half of all breast cancers and is considered a valuable therapeutic target in ERα positive breast cancer. Here, we designed a membrane-permeant Chaperonemediated Autophagy Targeting Chimeras (CMATAC) peptide to knockdown endogenous ERα protein through chaperone-mediated autophagy. The peptide contains a cell membrane-penetrating peptide (TAT) that allows the peptide to by-pass the plasma membrane, an αI peptide as a protein-binding peptide (PBD) that binds specifically to ERα, and CMA-targeting peptide (CTM) that targeting chaperone-mediated autophagy. We validated that ERα targeting peptide was able to target and degrade ERα to reduce the viability of ERα positive breast cancer cells. Taken together, our studies provided a new method to reduce the level of intracellular ERα protein via CMATAC, and thus may provide a new strategy for the treatment of ERα positive breast cancer.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer