Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Carbon trading has been deemed as the most effective mechanism to mitigate carbon emissions. However, during carbon trading market operation, competition among market participants will inevitably occur; hence, the precise forecasting of the carbon trading price (CTP) has become a significant element in the formulation of competition strategies. This investigation has established a hybrid CTP forecasting framework combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), sample entropy (SE) method, improved salp swarm algorithm (ISSA), and multi-kernel extreme learning machine (MKELM) methods to improve forecasting accuracy. Firstly, the initial CTP data sequence is disintegrated into several intrinsic mode functions (IMFs) and a residual sequence by a CEEMDAN method. Secondly, to save calculation time, SE method has been utilized to reconstruct the IMFs and the residual sequence into new IMFs. Thirdly, the new IMFs are fed into the MKELM model, combing RBF and the poly kernel functions to utilize their superior learning and generalization abilities. The parameters of the MKELM model are optimized by ISSA, combining dynamic inertia weight and chaotic local searching method into the SSA to enhance the searching speed, convergence precision, as well as the global searching ability. CTP data in Guangdong, Shanghai, and Hubei are selected to prove the validity of the established CEEMDAN-SE-ISSA-MKELM model. Through a comparison analysis, the established CEEMDAN-SE-ISSA-MKELM model performs the best with the smallest MAPE and RMSE values and the highest R2 value, which are 0.76%, 0.53, and 0.99, respectively, for Guangdong,. Thus, the presented model would be extensively applied in CTP forecasting in the future.

Details

Title
Carbon Trading Price Prediction of Three Carbon Trading Markets in China Based on a Hybrid Model Combining CEEMDAN, SE, ISSA, and MKELM
Author
Zhao, Haoran 1 ; Sen, Guo 2 

 School of Economics and Management, Beijing Information Science & Technology University, Beijing 100085, China; [email protected] 
 School of Economics and Management, North China Electric Power University, Beijing 102206, China 
First page
2319
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819475869
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.