Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of electrocatalysts for oxygen evolution reactions (OERs) is of great significance for hydrogen production. Defect engineering is an effective strategy to improve the OER performance of electrocatalyst by regulating the local electronic and atomic structures of electrocatalysts. Here, we successfully synthesized defective Prussian blue analogues (PBAs) with rich CN vacancies (D-NiFe PBA) as efficient OER electrocatalysts. The optimized D-NiFe PBA exhibited an overpotential of 280 mV at 10 mA cm−2 and a superior stability for over 100 h in KOH electrolytes. The formation of CN vacancies in the NiFe PBA could effectively inhibit the loss of Fe active sites, promote the reconstruction of the NiFe oxygen (hydroxide) active layer in the OER process, and further improve the electrocatalytic activity and stability of the VCN-NiFe PBA. This work presents a feasible approach for the wide application of vacancy defects in PBA electrocatalysts.

Details

Title
Boosting Water Oxidation Activity via Carbon–Nitrogen Vacancies in NiFe Prussian Blue Analogue Electrocatalysts
Author
Zhang, Meng; Wu, Wenjie; Wang, Zhen; Xie, Gang; Guo, Xiaohui
First page
14
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
25045377
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791599939
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.