Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Photocatalytic technology is considered an ideal approach for clean energy conversion and environmental pollution applications. In this work, a bifunctional BiOBr/ZIF-8/ZnO photocatalyst was proposed for removing phenols in wastewater and generating hydrogen peroxide. Insights from scanning electron microscopy measurements revealed the well-dispersion of ZIF-8/ZnO was on the BiOBr layer, which could effectively prevent agglomeration of ZIF-8 and facilitate the separation of carriers. In addition, the optimal H2O2 yield of the BiOBr/ZIF-8/ZnO sample could reach 116 mmol·L−1·g−1 within 2 h, much higher than that of pure BiOBr (with the value of 82 mmol·L−1·g−1). The optimal BiOBr/ZIF-8/ZnO sample could also remove 90% of the phenol or bisphenol A in 2 h, and its kinetic constants were 3.8 times and 2.3 times that of pure BiOBr, respectively. Based on the analysis of the various experimental characterizations, the photocatalytic mechanism of the S-scheme BiOBr/ZIF-8/ZnO composite for the degradation of phenolic pollutants and generation of H2O2 was proposed. The formation of the heterojunction and the oxygen vacancy work together to significantly improve its photocatalytic efficiency. In addition, the BiOBr/ZIF-8/ZnO catalyst has a certain impact on the degradation of phenol in actual wastewater, providing a way to effectively remove refractory pollutants and generate H2O2 in actual water.

Details

Title
A Bifunctional BiOBr/ZIF-8/ZnO Photocatalyst with Rich Oxygen Vacancy for Enhanced Wastewater Treatment and H2O2 Generation
Author
Han, Xiao; Zhang, Tianduo; Cui, Yang; Wang, Zhaoyang; Dong, Ruoyu; Wu, Yuhan; Du, Cuiwei; Chen, Ruyan; Yu, Chongfei; Feng, Jinglan; Sun, Jianhui; Dong, Shuying
First page
2422
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791679206
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.