Full Text

Turn on search term navigation

© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the rapid development of commercial flexible/wearable devices, flexible batteries have attracted great attention as optimal power sources. However, a combination of high energy density and excellent arbitrary deformation ability is still a critical challenge to satisfy practical applications. Inspired by rigid and soft features of chemical molecular structures, novel bidirectional flexible snake‐origami lithium‐ion batteries (LIBs) with both high energy density and favorable flexibility are designed and fabricated. The flexible snake‐origami battery consists of rigid and soft segments, where the former is designed as the energy unit and the latter served as the deformation unit. With the unique features from such design, the as‐fabricated battery with calculating all the components exhibits a record‐setting energy density of 357 Wh L−1 (133 Wh kg−1), compared with the cell‐scale flexible LIBs achieved from both academic and industry. Additionally, a design principle is established to verify the validity of utilizing rigid‐soft‐coupled structure for enduring various deformations, and the intrinsic relationship between battery structure, energy density, and flexibility can be confirmed. The results suggest that the design principle and performance of bidirectional flexible snake‐origami batteries will provide a new reliable strategy for achieving high energy flexible batteries for wearable devices.

Details

Title
Bidirectional Planar Flexible Snake‐Origami Batteries
Author
Li, Na 1 ; Chen, Haosen 1 ; Yang, Shuangquan 1 ; Yang, Heng 1 ; Jiao, Shuqiang 2 ; Wei‐Li Song 1   VIAFID ORCID Logo 

 Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, P. R. China 
 Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, P. R. China 
Section
Research Articles
Publication year
2021
Publication date
Oct 2021
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2583784603
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.