Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, with the growth of digital media and modern imaging equipment, the use of video processing algorithms and semantic film and image management has expanded. The usage of different video datasets in training artificial intelligence algorithms is also rapidly expanding in various fields. Due to the high volume of information in a video, its processing is still expensive for most hardware systems, mainly in terms of its required runtime and memory. Hence, the optimal selection of keyframes to minimize redundant information in video processing systems has become noteworthy in facilitating this problem. Eliminating some frames can simultaneously reduce the required computational load, hardware cost, memory and processing time of intelligent video-based systems. Based on the aforementioned reasons, this research proposes a method for selecting keyframes and adaptive cropping input video for human action recognition (HAR) systems. The proposed method combines edge detection, simple difference, adaptive thresholding and 1D and 2D average filter algorithms in a hierarchical method. Some HAR methods are trained with videos processed by the proposed method to assess its efficiency. The results demonstrate that the application of the proposed method increases the accuracy of the HAR system by up to 3% compared to random image selection and cropping methods. Additionally, for most cases, the proposed method reduces the training time of the used machine learning algorithm.

Details

Title
Best Frame Selection to Enhance Training Step Efficiency in Video-Based Human Action Recognition
Author
Abdorreza Alavi Gharahbagh 1   VIAFID ORCID Logo  ; Hajihashemi, Vahid 1   VIAFID ORCID Logo  ; Marta Campos Ferreira 1 ; Machado, José J M 2 ; João Manuel R S Tavares 2   VIAFID ORCID Logo 

 Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; [email protected] (A.A.G.); [email protected] (V.H.); [email protected] (M.C.F.) 
 Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; [email protected] 
First page
1830
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2632201767
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.