Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Commercial visual–inertial odometry (VIO) systems have been gaining attention as cost-effective, off-the-shelf, six-degree-of-freedom (6-DoF) ego-motion-tracking sensors for estimating accurate and consistent camera pose data, in addition to their ability to operate without external localization from motion capture or global positioning systems. It is unclear from existing results, however, which commercial VIO platforms are the most stable, consistent, and accurate in terms of state estimation for indoor and outdoor robotic applications. We assessed four popular proprietary VIO systems (Apple ARKit, Google ARCore, Intel RealSense T265, and Stereolabs ZED 2) through a series of both indoor and outdoor experiments in which we showed their positioning stability, consistency, and accuracy. After evaluating four popular VIO sensors in challenging real-world indoor and outdoor scenarios, Apple ARKit showed the most stable and high accuracy/consistency, and the relative pose error was a drift error of about 0.02 m per second. We present our complete results as a benchmark comparison for the research community.

Details

Title
A Benchmark Comparison of Four Off-the-Shelf Proprietary Visual–Inertial Odometry Systems
Author
Kim, Pyojin 1   VIAFID ORCID Logo  ; Kim, Jungha 1 ; Song, Minkyeong 1 ; Lee, Yeoeun 1 ; Jung, Moonkyeong 1 ; Kim, Hyeong-Geun 2 

 Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Republic of Korea 
 Department of Mechanical Engineering, Incheon National University, Incheon 22012, Republic of Korea 
First page
9873
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756782536
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.