Full Text

Turn on search term navigation

© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Seventy-five bacterial contaminants which still persisted to cleaning system from three puff pastry production lines (dough forming, layer and filling forming, and shock freezing) were identified using 16S rDNA as seven genera of Bacillus, Corynebacterium, Dermacoccus, Enterobacter, Klebsiella, Pseudomonas, and Staphylococcus with detection frequencies of 24.00, 2.66, 1.33, 37.33, 1.33, 2.66, and 30.66, respectively. Seventeen species were discovered while only 11 species Bacillus cereus, B. subtilis, B. pumilus, Corynebacterium striatum, Dermacoccus barathri, Enterobacter asburiae, Staphylococcus kloosii, S. haemolyticus, S. hominis, S. warneri, and S. aureus were detected at the end of production. Based on their abundance, the highest abundance of E. asburiae could be used as a biomarker for product quality. While a low abundance of the mesophile pathogen C. striatum, which causes respiratory and nervous infection and appeared only at the shock freezing step was firstly reported for its detection in bakery product. Six antimicrobial substances (AMSs) from lactic acid bacteria, FF1-4, FF1-7, PFUR-242, PFUR-255, PP-174, and nisin A were tested for their inhibition activities against the contaminants. The three most effective were FF1-7, PP-174, and nisin A exhibiting wide inhibition spectra of 88.00%, 85.33%, and 86.66%, respectively. The potential of a disinfectant solution containing 800 AU/ml of PP-174 and nisin A against the most resistant strains of Enterobacter, Staphylococcus, Bacillus and Klebsiella was determined on artificially contaminated conveyor belt coupons at 0, 4, 8, 12, and 16 hr. The survival levels of the test strains were below 1 log CFU/coupon at 0 hr. The results suggested that a combined solution of PP-174 and nisin A may be beneficial as a sanitizer to inhibit bacterial contaminants in the frozen puff pastry industry.

Details

Title
Bacterial contaminants from frozen puff pastry production process and their growth inhibition by antimicrobial substances from lactic acid bacteria
Author
Rumjuankiat, Kittaporn 1 ; Keawsompong, Suttipun 2 ; Nitisinprasert, Sunee 2 

 Specialized Research Unit: Prebiotics and Probiotics for Health, Faculty of Agro‐Industry, Department of Biotechnology, Kasetsart University, Bangkok, Thailand 
 Specialized Research Unit: Prebiotics and Probiotics for Health, Faculty of Agro‐Industry, Department of Biotechnology, Kasetsart University, Bangkok, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand 
Pages
454-465
Section
ORIGINAL RESEARCH
Publication year
2017
Publication date
May 2017
Publisher
John Wiley & Sons, Inc.
e-ISSN
20487177
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1903488694
Copyright
© 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.