Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Arsenic contamination of drinking water is a global concern. Standard laboratory methods that are commonly used for arsenic detection in water, such as atomic absorption spectroscopy and mass spectroscopy, are not suitable for mass monitoring purposes. Autonomous microfluidic detection systems combined with a suitable colorimetric reagent could provide an alternative to standard methods. Moreover, microfluidic detection systems would enable rapid and cost efficient in situ monitoring of water sources without the requirement of laborious sampling. The aim of this study is to optimize a colorimetric method based on leucomalachite green dye for integration into a microfluidic detection system. The colorimetric method is based on the reaction of arsenic (III) with potassium iodate in acid medium to liberate iodine, which oxidizes leucomalachite green to malachite green. A rapid colour development was observed after the addition of the dye. Beer’s law was obeyed in the range between 0.07–3 µg mL−1. The detection limit and quantitation limit were found to be 0.19 and 0.64 µg mL−1, respectively.

Details

Title
Arsenic Monitoring in Water by Colorimetry Using an Optimized Leucomalachite Green Method
Author
Lace, Annija 1   VIAFID ORCID Logo  ; Ryan, David 1   VIAFID ORCID Logo  ; Bowkett, Mark 2   VIAFID ORCID Logo  ; Cleary, John 1   VIAFID ORCID Logo 

 EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Co. Carlow, Ireland 
 TE Laboratories Ltd. (TelLab), Loughmartin Business Park, Tullow, R93 N529 Co. Carlow, Ireland 
First page
339
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549031430
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.