Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, cold atmospheric pressure plasma (CAPP) technology has received substantial attention due to its valuable properties including operational simplicity, low running cost, and environmental friendliness. Several different gases (air, nitrogen, helium, argon) and techniques (corona discharge, dielectric barrier discharge, plasma jet) can be used to generate plasma at atmospheric pressure and low temperature. Plasma treatment is routinely used in materials science to modify the surface properties (e.g., wettability, chemical composition, adhesion) of a wide range of materials (e.g., polymers, textiles, metals, glasses). Moreover, CAPP seems to be a powerful tool for the inactivation of various pathogens (e.g., bacteria, fungi, viruses) in the food industry (e.g., food and packing material decontamination, shelf life extension), agriculture (e.g., disinfection of seeds, fertilizer, water, soil) and medicine (e.g., sterilization of medical equipment, implants). Plasma medicine also holds great promise for direct therapeutic treatments in dentistry (tooth bleaching), dermatology (atopic eczema, wound healing) and oncology (melanoma, glioblastoma). Overall, CAPP technology is an innovative, powerful and effective tool offering a broad application potential. However, its limitations and negative impacts need to be determined in order to receive regulatory approval and consumer acceptance.

Details

Title
Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry
Author
Domonkos, Mária 1   VIAFID ORCID Logo  ; Tichá, Petra 1 ; Trejbal, Jan 1   VIAFID ORCID Logo  ; Demo, Pavel 2 

 Department of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Praha 6, Czech Republic; [email protected] (P.T.); [email protected] (J.T.); [email protected] (P.D.) 
 Department of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Praha 6, Czech Republic; [email protected] (P.T.); [email protected] (J.T.); [email protected] (P.D.); Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Praha 6, Czech Republic 
First page
4809
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2635413505
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.