Full Text

Turn on search term navigation

Copyright © 2014 Ezgi Deniz Ülker et al. Ezgi Deniz Ülker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The use of hybrid algorithms for solving real-world optimization problems has become popular since their solution quality can be made better than the algorithms that form them by combining their desirable features. The newly proposed hybrid method which is called Hybrid Differential, Particle, and Harmony (HDPH) algorithm is different from the other hybrid forms since it uses all features of merged algorithms in order to perform efficiently for a wide variety of problems. In the proposed algorithm the control parameters are randomized which makes its implementation easy and provides a fast response. This paper describes the application of HDPH algorithm to linear antenna array synthesis. The results obtained with the HDPH algorithm are compared with three merged optimization techniques that are used in HDPH. The comparison shows that the performance of the proposed algorithm is comparatively better in both solution quality and robustness. The proposed hybrid algorithm HDPH can be an efficient candidate for real-time optimization problems since it yields reliable performance at all times when it gets executed.

Details

Title
Application of Hybrid Optimization Algorithm in the Synthesis of Linear Antenna Array
Author
Ülker, Ezgi Deniz; Haydar, Ali; Dimililer, Kamil
Publication year
2014
Publication date
2014
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1601491892
Copyright
Copyright © 2014 Ezgi Deniz Ülker et al. Ezgi Deniz Ülker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.