Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Androgenesis in vitro is a basic method of obtaining haploid plants and DH (doubled haploid) lines of major crops such as potato, rapeseed, tomato, pepper, wheat, maize, and barley, and also many different minor crops and species with lower agricultural impact. Diploid plants appearing among androgenic regenerants are the effect of spontaneous doubling of the chromosome number in haploid cells during an embryo’s early developmental stages and are valuable fully homozygous breeding material. The subject of the presented research is spontaneous diploidization occurring in the development of androgenic, haploid pepper regenerants. In the presented experiment, the formation of diploid seeds was observed in the progeny of an androgenic, haploid plant derived in an anther culture of a hybrid (Capsicum annuum L. ATZ × Capsicum annuum L. ‘Corno di toro’)F2. Agromorphological and molecular analyses concerned eight diploid plants being progeny of the anther-derived haploid regenerant. Five of the plants constituted a phenotypically balanced group with valuable agromorphological features. Their genetic homogeneity was confirmed using 10 RAPD markers and 16 ISSR markers. Based on the results, it was concluded that anther-derived haploid plants of Capsicum can be the source of diploid, apomictic seeds, and the obtained offspring may constitute genetically stable, valuable breeding material.

Details

Title
Androgenesis—Technology for Obtaining Genetically Stable Breeding Material of Capsicum annuum L.
Author
Olszewska, Dorota  VIAFID ORCID Logo  ; Tomaszewska-Sowa, Magdalena
First page
19
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621254517
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.