Full Text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A photonic crystal fiber (PCF) sensor based on gold nanowires able to detect changes in surface plasmon resonance (SPR) was proposed and numerically investigated through the finite element method. To facilitate real-time detection, the analyte in this sensor was located outside the optical fiber. The effects of diameters of both air hole and gold wires on the sensing characteristics of the sensor were discussed. The sensor was designed to detect liquids with refractive indexes ranging between 1.33 and 1.36. The numerical simulations indicated that sensor structure improved its functionality. The maximum spectral sensitivity reached 9200 nm/RIU over the entire refractive index range. The average spectral sensitivity was estimated to be 5933 nm/RIU, and corresponded to a sensor resolution of 2.81 × 10−6 RIU. These findings look very promising for future use in detection of liquid.

Details

Title
Analysis of High Sensitivity Photonic Crystal Fiber Sensor Based on Surface Plasmon Resonance of Refractive Indexes of Liquids
Author
Yan, Xin; Li, Bin; Cheng, Tonglei; Li, Shuguang
Publication year
2018
Publication date
Sep 2018
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2126877146
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.