Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Earthquakes are one of the most overwhelming types of natural hazards. As a result, successfully handling the situation they create is crucial. Due to earthquakes, many lives can be lost, alongside devastating impacts to the economy. The ability to forecast earthquakes is one of the biggest issues in geoscience. Machine learning technology can play a vital role in the field of geoscience for forecasting earthquakes. We aim to develop a method for forecasting the magnitude range of earthquakes using machine learning classifier algorithms. Three different ranges have been categorized: fatal earthquake; moderate earthquake; and mild earthquake. In order to distinguish between these classifications, seven different machine learning classifier algorithms have been used for building the model. To train the model, six different datasets of India and regions nearby to India have been used. The Bayes Net, Random Tree, Simple Logistic, Random Forest, Logistic Model Tree (LMT), ZeroR and Logistic Regression algorithms have been applied to each dataset. All of the models have been developed using the Weka tool and the results have been noted. It was observed that Simple Logistic and LMT classifiers performed well in each case.

Details

Title
Analysis of Earthquake Forecasting in India Using Supervised Machine Learning Classifiers
First page
971
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2480045790
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.