Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metal allergy is a common disease that afflicts many people. Nevertheless, the mechanism underlying metal allergy development has not been completely elucidated. Metal nanoparticles might be involved in the development of a metal allergy, but the associated details are unknown. In this study, we evaluated the pharmacokinetics and allergenicity of nickel nanoparticles (Ni-NPs) compared with those of nickel microparticles (Ni-MPs) and nickel ions. After characterizing each particle, the particles were suspended in phosphate-buffered saline and sonicated to prepare a dispersion. We assumed the presence of nickel ions for each particle dispersion and positive control and orally administered nickel chloride to BALB/c mice repeatedly for 28 days. Results showed that compared with those in the Ni-MP administration group (MP group), the Ni-NP administration group (NP group) showed intestinal epithelial tissue damage, elevated serum interleukin (IL)-17 and IL-1β levels, and higher nickel accumulation in the liver and kidney. Additionally, transmission electron microscopy confirmed the accumulation of Ni-NPs in the livers of both the NP and nickel ion administration groups. Furthermore, we intraperitoneally administered a mixed solution of each particle dispersion and lipopolysaccharide to mice and then intradermally administered nickel chloride solution to the auricle after 7 days. Swelling of the auricle was observed in both the NP and MP groups, and an allergic reaction to nickel was induced. Particularly in the NP group, significant lymphocytic infiltration into the auricular tissue was observed, and serum IL-6 and IL-17 levels were increased. The results of this study showed that in mice, Ni-NP accumulation in each tissue was increased after oral administration and toxicity was enhanced, as compared to those with Ni-MPs. Orally administered nickel ions transformed into nanoparticles with a crystalline structure and accumulated in tissues. Furthermore, Ni-NPs and Ni-MPs induced sensitization and nickel allergy reactions in the same manner as that with nickel ions, but Ni-NPs induced stronger sensitization. Additionally, the involvement of Th17 cells was suspected in Ni-NP-induced toxicity and allergic reactions. In conclusion, oral exposure to Ni-NPs results in more serious biotoxicity and accumulation in tissues than Ni-MPs, suggesting that the probability of developing an allergy might increase.

Details

Title
Allergenicity and Bioavailability of Nickel Nanoparticles Compared to Nickel Microparticles in Mice
Author
Tsuchida, Dai 1   VIAFID ORCID Logo  ; Matsuki, Yuko 1 ; Tsuchida, Jin 1 ; Iijima, Masahiro 1 ; Tanaka, Maki 2 

 Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan 
 Department of Clinical Laboratory Science, School of Medical Technology, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan 
First page
1834
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785221677
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.