Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Since COVID-19 pneumonia broke out, the Chinese government has taken a series of measures to control the spread of the epidemic, which has made the air quality of Taiyuan in February 2020 significantly better than during the same period in previous years. In this paper, the Gray Relational Analysis (GRA) method was first applied to evaluate and analyze the influence of six major pollutants on air quality. Then, the improved seagull optimization algorithm (ISOA) was proposed and combined with Support Vector Regression (SVR) to establish a hybrid predicted model ISOA-SVR. Finally, the proposed ISOA-SVR was utilized to predict air quality index (AQI). The experimental results on two kinds of different data showed that the proposed ISOA-SVR had the better generalization ability and robustness compared with other predicted models. Further, the proposed ISOA-SVR is suitable for the prediction of AQI.

Details

Title
Air Pollutant Analysis and AQI Prediction Based on GRA and Improved SOA-SVR by Considering COVID-19
First page
336
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2499324615
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.