1 引言
转染重排(rearranged during transfection, RET)原癌基因编码一种受体酪氨酸激酶,对胚胎发生时期肠神经系统和肾脏的发育至关重要[1],但在正常肺组织的表达水平普遍很低[2]。RET基因位于染色体10q11.2,其表达由转录因子Sp家族(Sp1, Sp3)的DNA结合蛋白或早期生长反应蛋白1(early growth response 1, EGR1)等介导[3]。RET编码跨膜受体酪氨酸激酶(receptor tyrosine kinase, RTK),独特结构包含钙粘蛋白样结构域、富半胱氨酸结构域、跨膜结构域和酪氨酸激酶结构域[4]。RET受体酪氨酸激酶参与细胞生存、增殖、分化、迁移以及趋化等[5]。
RET作为原癌基因而被发现,是一种癌症驱动基因。RET基因融合或点突变可引起非配体依赖性激活,嵌合融合蛋白的形成为其临床表现形式之一[6]。RET与多种伴侣基因发生融合后,持续激活细胞外信号调节激酶(extracellular signal-regulated kinase, ERK)和磷脂酰肌醇3-激酶(phosphoinositide 3-kinase, PI3K)-蛋白激酶B(protein kinase B, AKT)等信号级联反应[7],进而促进胞内酪氨酸激酶结构域的自我磷酸化、信号传导增强以及癌变转化[8,9]。首例检测出因染色体倒位而形成RET基因融合的肺癌病例报告于2011年,利用全基因组测序在1例33岁非吸烟肺腺癌韩国男性患者肝脏转移灶中发现驱动蛋白家族成员5B(KIF5B)-RET[10]。
RET融合发生于0.7%-2%的非小细胞肺癌(non-small cell lung cancer, NSCLC),在腺癌组织学类型中检出率更高[11-15]。常见的融合伴侣包括KIF5B(约70%)、卷曲螺旋结构域蛋白6(coiled-coil domain-containing protein 6, CCDC6)(约20%),检出率低于2%的包括核受体共激活因子4(nuclear receptor coativator 4, NCOA4)、红细胞生成素肝细胞受体A(erythropoietin-producing hepatocyte receptor A, EPHA)以及磷脂酰肌醇结合网格蛋白组装蛋白(recombinant phosphatidylinositol binding clathrin assembly protein, PICALM)[16]。含三联基元33(tripartite motif-containing, TRIM33)也有报告[17]。
RET基因与其他基因结构域之间会发生融合,由此产生了NSCLC独特的生物学和临床病理学亚型。与非RET融合阳性NSCLC相比,这类患者往往年龄较轻(平均年龄:62.9岁 vs 67.2岁)、从不吸烟(非吸烟者比例:63.0% vs 18.1%)、以腺癌居多(非鳞癌比例:100% vs 79.4%)、体力状态较好[18],常伴脑转移(IV期患者确诊时的脑转移发生率为25%,终生患病率为46%)[19]。中国患者特征与西方人群类似,确诊时脑转移比例在17.7%-27.8%[20,21]。
根据最《美国国家综合癌症网络(National Comprehensive Cancer Network, NCCN)肿瘤临床管理实践指南:非小细胞肺癌》2021年第5版,RET可通过荧光原位杂交(fluorescence in situ hybridization, FISH)分离探针或实时逆转录-聚合酶链反应(reverse transcription-polymerase chain reaction, RT-PCR)检测[22]。然而,某些非经典融合类型尤其涉及罕见融合伴侣时可能无法分辨及检出。基于下一代测序(next generation sequencing, NGS)的方法特异性高,以RNA为基础的NGS在识别融合伴侣方面优于以DNA为基础的NGS[22]。2021年6月,《中国非小细胞肺癌RET基因融合临床检测专家共识》发表,强烈推荐所有病理诊断为腺癌的晚期NSCLC患者进行RET基因检测,同时推荐经活检组织病理学证实为非腺癌的晚期NSCLC、对表皮生长因子受体(epidermal growth factor receptor, EGFR)-酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)、间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK)-TKI耐药的患者、术后明确为浸润性腺癌的患者进行RET基因检测[23]。该指南推荐根据送检标本的类型(如肿瘤组织、细胞学、液体)、数量与质量、所检基因变异类型和数量以及实验室条件等合理选择检测方式,NGS-DNA/RNA以及RT-PCR均为强烈推荐的检测方法,必要时行多平台检测互补和验证[23]。在2021年9月发布的中国临床肿瘤学会(Chinese Society of Clinical Oncology)《非小细胞肺癌肺癌诊疗指南(2021版)》中,对于不可手术III期及IV期NSCLC,进一步将RET融合基因检测从II级推荐提升为I级推荐,推荐与EGFR、ALK、ROS1肺癌驱动基因同时检测[24]。
就RET融合阳性晚期NSCLC治疗策略而言,2021年第5版NCCN NSCLC指南推荐一线/后线治疗药物包括普拉替尼、塞尔帕替尼、卡博替尼、凡德他尼等,其中前两者代表了RET融合阳性肿瘤靶向治疗领域的崭新突破,推荐作为首选的一线用药方案[22]。2021版CSCO NSCLC诊疗指南推荐使用普拉替尼、塞尔帕替尼治疗RET融合基因阳性IV期NSCLC[24]。靶向药物治疗进展后,含铂化疗方案或免疫治疗可作为后线选择可作为后线选择[22,24]。本文将主要针对RET融合阳性晚期NSCLC人群的药物治疗进展进行回顾。
2 RET融合阳性晚期NSCLC药物治疗进展
2.1 靶向治疗
2.1.1 多靶点激酶抑制剂(multikinase inhibitor, MKI) RET受体酪氨酸激酶与其他酪氨酸激酶在激酶域结构上有相似之处[25]。早期针对RET融合阳性的肿瘤靶向治疗研究主要集中在具有非选择性RET抑制活性的MKI上,卡博替尼和凡德他尼为其中的代表,既抑制RET融合也抑制VEGFR/EGFR等其他激酶。
2017年,一项全球多中心的RET注册研究(GLORY)[16]回顾性收集了RET融合阳性晚期NSCLC使用多种MKI的疗效。对于既往未接受过RET-TKI治疗的患者,卡博替尼组(n=19)获得的ORR为37%,凡德他尼组(n=11)为18%,舒尼替尼组(n=9)为22%,尼达尼布组(n=2)报告了1例完全缓解,索拉非尼组(n=2)、阿来替尼组(n=2)、仑伐替尼组(n=2)、帕纳替尼组(n=2)、瑞戈非尼组(n=1)均未观察到缓解[16]。截至分析时,仅15%的患者仍在继续治疗,85%停止治疗[16]。
针对26例转移性或不可切除的RET融合阳性肺腺癌患者的II期研究中,卡博替尼获得的总缓解率(overall response rate, ORR)为28%。73%的患者因药物相关不良事件(adverse event, AE)需要减量。最常见的3级药物相关AE为无症状的脂肪酶升高(15%)[17]。
一项II期研究[26]探索了凡德他尼在转移性或复发的RET融合阳性NSCLC韩国患者中的疗效。既往接受过多次化疗且可评估的17例患者中,ORR为18%,疾病控制率(disease control rate, DCR)65%。无疾病进展生存期(progression free survival, PFS)4.5个月,总生存期(overall survival, OS)11.6个月。凡德他尼在19例经治晚期RET融合阳性NSCLC日本患者中显示了更好的疗效,ORR为53%,PFS为4.7个月,OS为11.1个月[27]。大多数药物相关AE为轻度。3级或4级AE包括高血压等[26,27]。
鉴于MKI有限的疗效以及较高的不良反应发生率(表1)[16,17,26-30],目前仅卡博替尼和凡德他尼获得 NCCN指南推荐在有限条件下治疗转移性RET融合阳性NSCLC[22]。然而,二者在原有适应证基础上重新用于RET融合阳性NSCLC的探索并未达到理想目标,出现治疗应答的病例均为部分缓解,且伴随的VEGFR2抑制带来的靶外效应影响了用药疗程的完成。另一方面,上述早期研究结果证实了RET可作为临床上行之有效的靶点,促进了从MKI到特异性RET-TKI的转换。
2.1.2 RET-TKI 普拉替尼(BLU-667)和塞尔帕替尼(LOXO-292)为 服、强效、高度选择性RET-TKI,治疗RET融合阳性晚期NSCLC均获得了优异的疗效。普拉替尼为新型小分子激酶抑制剂,对野生型RET、致癌性RET融合(包括最常见的KIF5B-RET和CCDC6-RET)以及突变(RET V804L、RET V804M和RET M918T)均有高度效力和选择性,半数抑制浓度(50% concentration of inhibition, IC50)均< 05 nmol/L[31,32]。普拉替尼为携带RET融合的NSCLC患者带来持久的缓解且无显著的靶外毒性反应[33]。另一高度选择性ATP竞争性RET-TKI为塞尔帕替尼,该药对包括获得性耐药突变在内的多种RET变异具有纳摩尔级的效力[31]。塞尔帕替尼也具有药代学优势,如高生物利用率(平均绝对值为73%)、对中枢神经系统的显著渗透力以及较少的药物相互作用[34]。二者均可以克服MKI治疗时发生的V804M等常见门卫突变。
全球多中心的单臂I期/II期ARROW临床研究评估了普拉替尼治疗包括NSCLC在内的RET变异实体瘤的疗效和安全性[35]。2021年美国临床肿瘤学会(American Society of Clinical Oncology, ASCO)年会报道的更新数据显示,对于可评估的RET融合阳性晚期NSCLC,随访17.1个月时,普拉替尼初始治疗获得的ORR为79%,完全缓解(complete response, CR)率为6%,中位缓解持续时间(duration of response, DoR)尚未达到(n=68);中位PFS为13.0个月(n=75)。普拉替尼治疗铂类化疗经治患者ORR为62%,CR率为4%,DoR为22.3个月(n=126);中位PFS为16.5个月(n=136)[35]。9例患者基线期伴可测量脑转移灶,颅内病灶ORR为56%,其中3例达到颅内CR(33%)[36]。普拉替尼400 mg qd治疗RET融合阳性晚期NSCLC耐受性良好,大部分治疗相关AE为1级-2级,普拉替尼治疗相关的最常见≥3级AE包括中性粒细胞减少症(20%)、贫血(13%)、高血压(12%)等[35]。基于ARROW研究结果,普拉替尼于2020年9月获得了美国食品药品监督管理局(U.S. Food and Drug Administration, FDA)批准作为RET融合阳性晚期NSCLC一线或后线治疗,并于2021年3月获得中国国家药品监督管理局附条件批准,用于既往接受过含铂化疗的RET基因融合阳性的局部晚期或转移性NSCLC成人患者的治疗。
全球性I期/II期临床研究LIBRETTO-001评估了塞尔帕替尼治疗晚期RET异常实体瘤患者的疗效和安全性[37,38]。数据显示,塞尔帕替尼初始治疗RET融合阳性NSCLC(n=48)中位随访9.8个月时ORR为85%,CR率为2%;DoR尚未达到(中位随访15.7个月);中位PFS尚未达到,1年PFS率为68%(中位随访10.8个月);2年OS率为88%(中位随访12.6个月)[38]。塞尔帕替尼治疗铂类经治患者(n=105)中位随访15.7个月时ORR为64%,CR率为3%;DoR为17.5个月(中位随访15.7个月);中位PFS为19.3个月,1年PFS率为66%(中位随访16.8个月);2年OS率为68%(中位随访19.9个月)[38]。基线伴可测量脑转移灶的患者中(n=11),颅内ORR为91%(10/11)[37]。塞尔帕替尼治疗相关的最常见≥3级AE包括高血压(12%)、丙氨酸氨基转移酶(alanine transaminase, ALT)升高(8%)、天冬氨酸转氨酶(aspartate aminotransferase, AST)升高(7%)等[38]。基于LIBRETTO-001报告结果,塞尔帕替尼于2020年5月被美国FDA批准一线或后线治疗RET融合阳性晚期NSCLC。
以上研究在中国亚组中得到类似的结果。根据2021年9月初世界肺癌大会(World Conference on Lung Cancer, WCLC)最新报告,ARROW研究中,中位随访8.2个月时,普拉替尼初始治疗中国患者获得的ORR为80%,CR率为6.7%(n=30);中位随访17.0个月时,普拉替尼治疗铂类化疗经治中国患者的ORR为66.7%,CR率为3.0%(n=33);最常见的3级-4级治疗相关AE包括中性粒细胞计数减少(33.8%)、贫血(32.4%)以及血肌酐磷酸激酶升高(17.6%)[39]。同样地,2021年WCLC公布的LIBRETTO-001中国亚组数据[40]显示,中位随访10.3个月时,塞尔帕替尼初始治疗(n=11)获得的ORR为90.9%,CR率为18.2%;铂类/免疫制剂/MKI经治患者(n=36)的ORR为58.3%,CR率为2.8%;最常见的≥3级治疗相关AE包括ALT升高(15.6%)、AST升高(15.6%)以及高血压(15.6%)。
普拉替尼与塞尔帕替尼治疗RET融合NSCLC均具有强效且持续的缓解,兼有良好的颅内活性。NCCN NSCLC指南(2021年第5版)推荐普拉替尼和塞尔帕替尼作为RET融合阳性转移性NSCLC一线或后续治疗首选;若一线治疗期间发现存在RET融合,可继续完成原系统治疗或中断治疗接受普拉替尼与塞尔帕替尼治疗[22]。
2.2 化疗
有研究[20]提示,RET融合阳性NSCLC对以培美曲塞为基础的化疗方案敏感。一项多中心、回顾性分析显示,纳入62例RET融合阳性晚期NSCLC,接受培美曲塞为基础的化疗(联合铂类或单药),ORR和DCR分别为50%、90.9%;其他化疗方案的ORR和DCR分别为44.4%、77.8%;以培美曲塞为基础的化疗显著延长PFS(9.2个月 vs 5.2个月,P=0.007),并有延长OS的趋势(35.2个月 vs 22.6个月,P=0.052)。
GLORY全球研究[16]中,108例RET融合阳性晚期NSCLC患者接受一线化疗,其中84例为铂类两联,66例为铂类+培美曲塞,获得的最佳缓解分别为52%、51%、49%,中位PFS分别为6.6个月、7.8个月、6.4个月,中位OS分别为23.6个月、24.8个月、23.6个月。
整体而言,化疗能够带来一定的临床获益。在靶向药物临床可及前或不适用的情况下,以铂类为基础的方案是患者有限的治疗选择之一。
2.3 免疫治疗
免疫检查点抑制剂(immune checkpoint inhibitor, ICI)已成为驱动基因阴性转移性NSCLC的标准治疗[22]。但免疫治疗对EGFR、ALK等驱动基因突变阳性患者的疗效不佳。免疫治疗RET融合阳性NSCLC的数据有限,样本量小。大多数RET融合阳性NSCLC程序性死亡配体1(programmed death-ligand 1, PD-L1)表达水平低,肿瘤突变负荷低[41]。
针对晚期RET融合阳性肺癌的回顾性研究[40]显示,在26例有足够组织用于PD-L1检测的患者中,肿瘤PD-L1表达0%、1%-49%的比例分别为58%、23%;在44例有足够组织用于肿瘤突变负荷分析的患者中,中位肿瘤突变负荷为1.76突变/Mb,低于RET野生型的中位值5.27突变/Mb。16例患者接受了免疫治疗,中位线数为2[41]。无论抗程序性死亡分子1(programmed death-1, PD-1)/程序性死亡受体-配体1(programmed cell death-ligand 1, PD-L1)单克隆抗体(单抗)单用还是联合抗细胞毒性T淋巴细胞相关抗原4(cytotoxic T lymphocyte-associated antigen-4, CTLA4)单抗治疗,均未观察到临床和/或病理学缓解病例。患者PFS为3.4个月[41]。
IMMUNOTARGET注册研究分析了来自10个国家的接受ICI单药治疗的晚期NSCLC人群,其中RET亚组(n=16)ORR仅为6%,PFS为2.1个月[42]。
GFPC 01-2018回顾性研究[43]报告了免疫治疗在真实世界RET融合NSCLC队列中高达37.5%的ORR和7.6个月的PFS,其中56%的纳入分析的患者(n=9)为PD-L1阴性,22%为PD-L1≥50%,且全部ICI用药为≥二线。
59例晚期或复发RET融合阳性NSCLC的韩国真实世界研究[44]中,凡德他尼组ORR为15.8%;以培美曲塞为基础的化疗(联合铂类或单用)患者ORR为63%,PFS为9.0个月,OS为24.1个月;免疫治疗组ORR为7.7%,PFS为2.1个月,OS为12.4个月。相反,针对45例中国患者的回顾性分析[45]表明,MKI vs 化疗 vs ICI治疗获得的PFS并无显著差异(3.8个月 vs 3.5个月 vs 2.5个月),接受ICI治疗的10例可评估患者ORR为20%。类似地,Hegde等[46]针对转诊至MD Anderson癌症中心参与I期临床研究项目的70例RET融合阳性恶性肿瘤的回顾性分析发现,在29例NSCLC亚组,接受非ICI治疗的患者(n=13)中位至治疗终止时间长于ICI治疗,但差异无统计学意义(9.3个月 vs 3.4个月,P=0.16)。该研究者认为这可能归因于非ICI治疗主要为效力不够强的老药MKI,而不是选择性RET抑制剂这类新药[46]。多变量分析中,非甲状腺髓样癌诊断为治疗终止风险升高的独立预测因素,非ICI治疗为治疗终止风险下降的独立预测因素[46]。
尽管ICI在肺癌治疗方面树立了新的里程碑,但基于目前有限的证据,免疫治疗RET融合阳性NSCLC患者的有效性不够理想,预测缺乏获益。NCCN指南指出,对于晚期或转移性NSCLC,若检出致癌基因(如RET融合阳性等),应禁忌PD-1/PD-L1抑制剂治疗,不推荐免疫单药或免疫联合化疗方案作为系统性初始治疗[22]。
3 探索与展望
目前RET融合阳性NSCLC治疗存在仍未满足的需求以及亟待解决的问题。随着强效RET-TKI的应用,获得性耐药的发生不可避免。这推动了相关耐药机制的探索以及应对策略的研究。
自发现以来,RET融合基因通常被认为与其他分子变异是互斥的[47]。但陆续有报告指出,少数病例中RET融合可能与EGFR[11,48,49]、KRAS[48]、TP53[11]、AKT1[49]、MAP2K1[49]、CTNNB1[49]突变重叠。另外,一些接受EGFR TKI治疗疾病进展的EGFR突变NSCLC患者中报告了RET融合[50],提示RET融合可能为对EGFR抑制剂原发性或获得性耐药的潜在机制。对于RET融合阳性NSCLC中多种突变共存的现象,目前尚无确切结论。
3.1 靶向治疗耐药
RET抑制剂的耐药机制包括RET靶内和RET靶外旁路激活[51]。前者为靶点激酶内继发性(或获得性)耐药突变,在激酶抑制剂选择压力下动态进化,使激酶在用药情况下持续激活。后者指重新激活不同的细胞内通路,绕过靶向受体激酶介导的信号。
MKI耐药涵盖了上述全部机制,但以二次耐药变异的V804残基门卫突变为主(最为人们所熟知的为RET V804L/M[52,53]),次之为错义突变S904F,其他如G810残基溶剂前沿突变、I788N体细胞突变目前多报告于临床前模型。就非RET变异而言,MDM2扩增被发现可导致RET重排阳性肺癌内在性与获得性耐药[54],而其他旁路信号激活(如MAPK、EGFR、AXL)也仅见于临床前模型[51]。
鉴于不同于MKI与RET的结合模式,选择性RET-TKI能够避免门卫突变的干扰,但仍可发生非门卫继发性突变[55],目前认为选择性RET-TKI耐药主要由独立于RET的靶外机制驱动,即以RET旁路激活为主,还包括RET位点的溶剂前沿突变。目前关于相关耐药机制的报道有限,对普拉替尼和塞尔帕替尼治疗耐药的20例RET融合阳性NSCLC肿瘤和血浆活检样本进行分析,检出3例(15%)MET扩增,2例(10%)溶剂前沿突变G810C/S耐药,1例(5%)KRAS扩增[56]。此前Solomon等[57]首次报告了利用ctDNA分析塞尔帕替尼治疗后疾病进展患者中发现G810溶剂前沿突变。另外,普拉替尼和塞尔帕替尼耐药细胞系中也发现了RET激酶域内铰链区(Y806C)和β2链区(V738A)突变[55]。研究证实,普拉替尼[58,59]和塞尔帕替尼[52,60]可以克服携带门卫突变的相关耐药。
3.2 联合治疗策略
3.2.1 抗RET治疗+其他靶向制剂 2015年RET融合阳性NSCLC病例报告首次提供了凡德他尼+mTOR抑制剂依维莫司联合方案能够增强血脑屏障穿透的证据[55],这在后来的研究中得到证实。凡德他尼+依维莫司为全部6例RET融合阳性NSCLC中均带来缓解,且对伴脑转移或卡博替尼难治性病例也表现出抗肿瘤活性[61]。前述LIBRETTO-001研究中有4例患者检出MET扩增,塞尔帕替尼+MET/ALK/ROS1抑制剂克唑替尼联合治疗显示出临床活性与耐受性[62]。
3.2.2 继发RET融合 陆续有报告指出,在EGFR抑制治疗过程中,RTK融合可以发展成为对EGFR TKI的获得性耐药,而确切发生机制仍有待阐明。对EGFR突变NSCLC中作为获得性耐药机制的RTK融合类型及其融合伴侣的首个且最全面的病例分析发现,接受1代-3代EGFR TKI治疗后出现获得性耐药RTK融合的86例患者中,RET最为常见(43%),ALK次之(26%)[63]。尽管KIF5B-RET为肺癌中检出的RET融合变异的最常见形式,在EGFR-TKI治疗进展的病例中仅1例KIF5B-RET,占全部获得性耐药RET融合的2%;CCDC6-RET占比最多(58%),其次为NCOA4(26%)[63]。随后针对奥希替尼治疗失败的12例EGFR突变NSCLC检测同样观察到,随治疗出现的RET融合中最常见的为CCDC6-RET(42%)、NCOA4-RET(33%),KIF5B-RET占17%[64]。上述结果提示,这些已发现RET融合变异或许在EGFR TKI使用前存在的可能性不大[63]。作为获得性耐药机制,RTK融合在第1或2代EGFR TKI治疗背景下的发生率(1.8%)低于以奥希替尼(3.7%)为代表的第3代[63]。这种差异可能归因于第1代或2代EGFR TKI耐药时常出现第2位点T790M突变,或同时受到测序技术的影响。另外,有研究[65]在ALK阳性NSCLC肿瘤样本中发现CCDC6-RET融合,在二线Brigatinib治疗后产生获得性耐药而检出(为该患的第2次肿瘤活检),而此前在阿来替尼一线治疗后的活检中并未发现。这提示RET融合均可能导致EGFR或ALK阳性NSCLC的获得性耐药。
针对特定获得性耐药RTK融合与基础EGFR突变的双重阻断已证实了临床安全性和有效性。对于EGFR-TKI耐药后出现RET融合的患者,使用卡博替尼或普拉替尼+一种EGFR TKI已证实临床获益[63]。已有研究[66]表明普拉替尼联合奥希替尼能够克服奥希替尼耐药,迅速且显著改善病情,耐受性良好。塞尔帕替尼+奥希替尼也显示为EGFR突变NSCLC出现获得性RET融合情况下的可行方案,该联合方案证实为奥希替尼耐药患者带来影像学缓解和持久获益[64]。
3.3 正在开展的临床试验和新型靶向药物
正在开展的AcceleRET Lung III期临床研究旨在比较普拉替尼 vs 标准方案(含铂化疗±帕博利珠单抗)一线治疗晚期或转移性RET融合阳性NSCLC的有效性与安全性[67]。另一项类似设计的全球随机对照III期研究LIBRETTO-431将评估塞尔帕替尼 vs 培美曲塞+顺铂或卡铂±帕博利珠单抗在局部晚期或转移性RET融合阳性NSCLC中的一线治疗[68]。上述两项研究均允许随机分配至对照组的患者在疾病进展后交叉至RET-TKI组治疗。研究将进一步为RET抑制剂在RET融合阳性晚期NSCLC的一线应用提供数据。此外,靶向治疗联合化疗或抗血管生成等治疗模式也值得在未来研究中探索。
RET抑制剂一线治疗RET融合阳性NSCLC出现疾病进展后的治疗方案尚需探索,需要进一步观察耐药的机制。II期ORCHARD平台研究将入组奥希替尼一线治疗时疾病进展的局部晚期/转移性EGFR突变NSCLC,其中组A包括携带RET融合的患者并将给予塞尔帕替尼+奥希替尼治疗[69]。除了通过联合治疗策略克服耐药,还需要开发下一代RET-TKI以克服门卫和非门卫突变。目前研发中的小分子抑制剂,如(1.)TPX-0046:选择性RET/SRC抑制剂,在RET变异的细胞系和患者来源的异种移植肿瘤模型中已显示出临床前活性[70];(2.)BOS172738:新型RET抑制剂,I期研究已经启动[71];(3.)RXDX105:MKI,能够抑制野生型RET、突变型RET(如RET M918T)、由RET融合产生的嵌合癌基因蛋白(KIF5B-RET、CCDC6-RET、NCOA4-RET、PRKAR1A-RET),对VEGFR无活性。在I期/Ib期研究中,对既往未接受过RET抑制剂的RET融合阳性肺癌患者显示出临床活性[72]。
4 结语
RET融合阳性NSCLC的治疗已进入靶向治疗的时代,MKI类药物疗效有限,不良反应发生率高,可作为不能获得RET-TKI治疗后的选择。传统化疗疗效相对有限,免疫治疗单药或联合化疗的疗效欠佳,无论PD-L1表达水平如何,均不推荐使用。
选择性RET-TKI普拉替尼和塞尔帕替尼从根本上改变了RET融合阳性NSCLC患者的治疗格局。ARROW研究结果显示,普拉替尼治疗初治和经治RET融合阳性晚期NSCLC疗效确切,耐受性良好。普拉替尼在中国已获批用于既往接受过含铂化疗的RET融合阳性的局部晚期或转移性NSCLC成人患者的治疗。NCCN指南推荐RET融合阳性晚期NSCLC一线首选普拉替尼和塞尔帕替尼治疗。
未来仍需进一步探索RET融合阳性晚期NSCLC接受RET抑制剂治疗后的耐药机制,探索同时抑制RET和并行的耐药信号通路的联合治疗新策略,以及积极评估正在研发中的选择性RET-TKI,以期为RET融合阳性NSCLC人群提供更多的治疗选择,为具体患者制定最佳的治疗方案。
Durbec P, Marcos-Gutierrez CV, Kilkenny C, et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature, 1996, 381(6585): 789-793. doi: 10.1038/381789a0
Su AI, Cooke MP, Ching KA, et al. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci, 2002, 99(7): 4465-4470. doi: 10.1073/pnas.012025199
Andrew SD, Delhanty PJ, Mulligan LM, et al. Sp1 and Sp3 transactivate the RET proto-oncogene promoter. Gene, 2000, 256(1-2): 283-291. doi: 10.1016/s0378-1119(00)00302-4
Ibá?ez CF. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb Perspect Biol, 2013, 5(2): a009134. doi: 10.1101/cshperspect.a009134
Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev, 2005, 16(4-5): 441-467. doi: 10.1016/j.cytogfr.2005.05.010
Mulligan LM. GDNF and the RET receptor in cancer: new insights and therapeutic potential. Front Physiol, 2019, 9: 1873. doi: 10.3389/fphys.2018.01873
Regad T. Targeting RTK signaling pathways in cancer. Cancers (Basel), 2015, 7(3): 1758-1784. doi: 10.3390/cancers7030860
Sangwan V, Park M. Receptor tyrosine kinases: role in cancer progression. Curr Oncol, 2006, 13(5): 191-193 .
Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer, 2014, 14(3): 173-186. doi: 10.1038/nrc3680
Ju YS, Lee WC, Shin JY, et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res, 2012, 22(3): 436-445. doi: 10.1101/gr.133645.111
Platt A, Morten J, Ji Q, et al. A retrospective analysis of RET translocation, gene copy number gain and expression in NSCLC patients treated with vandetanib in four randomized phase III studies. BMC Cancer, 2015, 15: 171. doi: 10.1186/s12885-015-1146-8
Michels S, Scheel AH, Scheffler M, et al. Clinicopathological characteristics of RET rearranged lung cancer in European patients. J Thorac Oncol, 2016, 11(1): 122-127. doi: 10.1016/j.jtho.2015.09.016
Tsuta K, Kohno T, Yoshida A, et al. RET-rearranged non-small-cell lung carcinoma: a clinicopathological and molecular analysis. Br J Cancer, 2014, 110(6): 1571-1578. doi: 10.1038/bjc.2014.36
Wang R, Hu H, Pan Y, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol, 2012, 30(35): 4352-4359. doi: 10.1200/JCO.2012.44.1477
Lipson D, Capelletti M, Yelensky R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med, 2012, 18(3): 382-384. doi: 10.1038/nm.2673
Gautschi O, Milia J, Filleron T, et al. Targeting RET in patients with RET-rearranged lung cancers: results rrom the global, multicenter RET registry. J Clin Oncol, 2017, 35(13): 1403-1410. doi: 10.1200/JCO.2016.70.9352
Drilon A, Rekhtman N, Arcila M, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol, 2016, 17(12): 1653-1660. doi: 10.1016/S1470-2045(16)30562-9
Hess LM, Han Y, Zhu YE, et al. Characteristics and outcomes of patients with RET-fusion positive non-small lung cancer in real-world practice in the United States. BMC Cancer, 2021, 21(1): 28. doi: 10.1186/s12885-020-07714-3.
Drilon A, Lin JJ, Filleron T, et al. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET-rearranged lung cancers. J Thorac Oncol, 2018, 13(10): 1595-1601. doi: 10.1016/j.jtho.2018.07.004
Shen T, Pu X, Wang L, et al. Association between RET fusions and efficacy of pemetrexed-based chemotherapy for patients with advanced NSCLC in China: a multicenter retrospective study. Clin Lung Cancer, 2020, 21(5): e349-e354. doi: 10.1016/j.cllc.2020.02.006
Li W, Guo L, Liu Y, et al. Potential Unreliability of Uncommon ALK, ROS1, and RET Genomic Breakpoints in Predicting the Efficacy of Targeted Therapy in NSCLC. J Thorac Oncol, 2021, 16(3):404-418. doi: 10.1016/j.jtho.2020.10.156
National Comprehensive Cancer Network? (NCCN?). NCCN clinical practice guidelines in oncology (NCCN Guidelines?). Non-small cell lung cancer. Version 5. 2021-June 15, 2021.
中国抗癌D?会肿瘤病理专业委员会分子病理D?作组, 中华医学会病理学分会分子病理学组, 国家病理质控中心. 中国非小细胞肺癌RET基因融合临床检测专家共识. 中华病理学杂志, 2021, 50(6): 583-591. doi: 10.3760/cma.j.cn112151-20210411-00273
中国临床肿瘤学会(CSCO)指南工作委员会. 非小细胞肺癌肺癌诊疗指南(2021版). 北京:人民卫生出版社,2021
Knowles PP, Murray-Rust J, Kjaer S, et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem, 2006, 281(44): 33577-33587. doi: 10.1074/jbc.M605604200
Lee SH, Lee JK, Ahn MJ, et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann Oncol, 2017, 28(2): 292-297. doi: 10.1093/annonc/mdw559
Yoh K, Seto T, Satouchi M, et al. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. Lancet Respir Med, 2017, 5(1): 42-50. doi: 10.1016/S2213-2600(16)30322-8
Horiike A, Takeuchi K, Uenami T, et al. Sorafenib treatment for patients with RET fusion-positive non-small cell lung cancer. Lung Cancer, 2016, 93: 43-46. doi: 10.1016/j.lungcan.2015.12.011
Lin JJ, Kennedy E, Sequist LV, et al. Clinical activity of alectinib in advanced RET-rearranged non-small cell lung cancer. J Thorac Oncol, 2016, 11(11): 2027-2032. doi: 10.1016/j.jtho.2016.08.126
Velcheti V, Hida T, Reckamp KL. Phase 2 study of lenvatinib (LN) in patients (Pts) with RET fusion-positive adenocarcinoma of the lung. Ann Oncol, 2016, 27(suppl_6): 1204PD. doi: 10.1093/annonc/mdw383.05
Bronte G, Ulivi P, Verlicchi A, et al. Targeting RET-rearranged non-small-cell lung cancer: future prospects. Lung Cancer (Auckl), 2019, 10: 27-36. doi: 10.2147/LCTT.S192830
Highlights of prescribing information. GAVRETO? (pralsetinib) capsules, for oral use Initial U.S. Approval: 2020. Revised: 04/2021.
Subbiah V, Gainor JF, Rahal R, et al. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov, 2018, 8(7): 836-849. doi: 10.1158/2159-8290.CD-18-0338
Subbiah V, Velcheti V, Tuch BB, et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol, 2018, 29(8): 1869-1876. doi: 10.1093/annonc/mdy137
Curigliano G, Gainor JF, Griesinger F, et al. Safety and efficacy of pralsetinib in patients with advanced RET fusion-positive non-small cell lung cancer: Update from the ARROW trial. J Clin Oncol, 2021, 39(15_suppl): 9089. doi: 10.1200/JCO.2021.39.15_suppl.9089
Gainor JF, Curigliano G, Kim DW, et al. Registrational dataset from the phase I/II ARROW trial of pralsetinib (BLU-667) in patients (pts) with advanced RET fusion+ non-small cell lung cancer (NSCLC). J Clin Oncol, 2020, 38: Abstract 9515.
Drilon A, Oxnard GR, Tan DSW, et al. Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med, 2020, 383(9): 813-824. doi: 10.1056/NEJMoa2005653
Besse B, Drilon AE, Solomon BJ, et al. Updated overall efficacy and safety of selpercatinib in patients (pts) with RET fusion+ non-small cell lung cancer (NSCLC). J Clin Oncol, 2021, 39(15_suppl): 9065. doi: 10.1200/JCO.2021.39.15_suppl.9065
Zhou Q, Wu YL, Chang JH, et al. Efficacy and safety of pralsetinib in Chinese patients with advanced RET fusion+ non-small cell lung cancer. Presented at: 2021 World Conference on Lung Cancer; September 8-14, 2021. Virtual. Abstract M02.02.
Lu S, Cheng Y, Huang DZ, et al. Efficacy and safety of selpercatinib in Chinese patients with RET fusion-positive non-small cell lung cancer: a phase 2 trial. Presented at: 2021 World Conference on Lung Cancer; September 8-14, 2021. Virtual. Abstract MA02.01.
Offin M, Guo R, Wu SL, et al. Immunophenotype and response to immunotherapy of RET-rearranged lung cancers. JCO Precis Oncol, 2019, 3: PO.18.00386. doi: 10.1200/PO.18.00386
Mazieres J, Drilon A, Lusque A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol, 2019, 30(8): 1321-1328. doi: 10.1093/annonc/mdz167
Guisier F, Dubos-Arvis C, Vi?as F, et al. Efficacy and safety of anti-PD-1 immunotherapy in patients with advanced NSCLC with BRAF, HER2, or MET mutations or RET translocation: GFPC 01-2018. J Thorac Oncol, 2020, 15(4): 628-636. doi: 10.1016/j.jtho.2019.12.129
Lee J, Ku BM, Shim JH, et al. Characteristics and outcomes of RET-rearranged Korean non-small cell lung cancer patients in real-world practice. Jpn J Clin Oncol, 2020, 50(5): 594-601. doi: 10.1093/jjco/hyaa019
Lu C, Dong XR, Zhao J, et al. Association of genetic and immuno-characteristics with clinical outcomes in patients with RET-rearranged non-small cell lung cancer: a retrospective multicenter study. J Hematol Oncol, 2020, 13(1): 37. doi: 10.1186/s13045-020-00866-6
Hegde A, Andreev-Drakhlin AY, Roszik J, et al. Responsiveness to immune checkpoint inhibitors versus other systemic therapies in RET-aberrant malignancies. ESMO Open, 2020, 5(5): e000799. doi: 10.1136/esmoopen-2020-000799
Ferrara R, Auger N, Auclin E, et al. Clinical and translational implications of RET rearrangements in non-small cell lung cancer. J Thorac Oncol, 2018, 13(1): 27-45. doi: 10.1016/j.jtho.2017.10.021
Kim JO, Lee J, Shin JY, et al. KIF5B-RET fusion gene may coincide oncogenic mutations of EGFR or KRAS gene in lung adenocarcinomas. Diagn Pathol, 2015, 10: 143. doi: 10.1186/s13000-015-0368-z
Song Z, Yu X, Zhang Y. Clinicopathologic characteristics, genetic variability and therapeutic options of RET rearrangements patients in lung adenocarcinoma. Lung Cancer, 2016, 101: 16-21. doi: 10.1016/j.lungcan.2016.09.002
Klempner SJ, Bazhenova LA, Braiteh FS, et al. Emergence of RET rearrangement co-existing with activated EGFR mutation in EGFR-mutated NSCLC patients who had progressed on first- or second-generation EGFR TKI. Lung Cancer, 2015, 89(3): 357-359. doi: 10.1016/j.lungcan.2015.06.021
Subbiah V, Yang D, Velcheti V, et al. State-of-the-art strategies for targeting RET-dependent cancers. J Clin Oncol, 2020, 38(11): 1209-1221. doi: 10.1200/JCO.19.02551
Dagogo-Jack I, Stevens SE, Lin JJ, et al. Emergence of a RET V804M gatekeeper mutation during treatment with vandetanib in RET-rearranged NSCLC. J Thorac Oncol, 2018, 13(11): e226-e227. doi: 10.1016/j.jtho.2018.06.021
Wirth LJ, Kohno T, Udagawa H, et al. Emergence and targeting of acquired and hereditary resistance to multikinase RET inhibition in patients with RET-altered cancer. JCO Precis Oncol, 2019, 3: PO.19.00189. doi: 10.1200/PO.19.00189
Somwar R, Smith R, Hayashi T, et al. MDM2 amplification (Amp) to mediate cabozantinib resistance in patients (Pts) with advanced RET-rearranged lung cancers. J Clin Oncol, 2016, 34(15_suppl): 9068. doi: 10.1200/JCO.2016.34.15_suppl.9068
Subbiah V, Shen T, Terzyan SS, et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann Oncol, 2021, 32(2): 261-268. doi: 10.1016/j.annonc.2020.10.599
Lin JJ, Liu SV, McCoach CE, et al. Mechanisms of resistance to selective RET tyrosine kinase inhibitors in RET fusion-positive non-small-cell lung cancer. Ann Oncol, 2020, 31(12): 1725-1733. doi: 10.1016/j.annonc.2020.09.015
Solomon BJ, Tan L, Lin JJ, et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J Thorac Oncol, 2020, 15(4): 541-549. doi: 10.1016/j.jtho.2020.01.006
Taylor MH, Gainor JF, Hu MI-N, et al. Activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients with advanced RET-altered thyroid cancers. J Clin Oncol, 2019, 37(15_suppl): 6018. doi: 10.1200/JCO.2019.37.15_suppl.6018
Gainor JF, Lee DH, Curigliano G, et al. Clinical activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients (pts) with advanced RET-fusion+ non-small cell lung cancer (NSCLC). J Clin Oncol, 2019, 37(15_suppl): 9008. doi: 10.1200/JCO.2019.37.15_suppl.9008
Drilon A, Rekhtman N, Arcila M, et al. Registrational results of LIBRETTO-001: A phase 1/2 trial of LOXO-292 in patients with RET fusion-positive lung cancers. J Thorac Oncol, 2019, 14: Abstract S6-S7.
Cascone T, Subbiah V, Hess KR, et al. Significant systemic and CNS activity of RET inhibitor vandetanib combined with mTOR inhibitor everolimus in patients with advanced NSCLC with RET fusion. J Clin Oncol, 2016, 34: 9069. doi: 10.1200/JCO.2016.34.15_suppl.9069
Rosen EY, Johnson ML, Clifford SE, et al. Overcoming MET-dependent resistance to selective RET inhibition in patients with RET fusion-positive lung cancer by combining selpercatinib with crizotinib. Clin Cancer Res, 2021, 27(1): 34-42. doi: 10.1158/1078-0432.CCR-20-2278
Zhu VW, Klempner SJ, Ou SI. Receptor tyrosine kinase fusions as an actionable resistance mechanism to EGFR TKIs in EGFR-mutant non-small-cell lung cancer. Trends Cancer, 2019, 5(11): 677-692. doi: 10.1016/j.trecan.2019.09.008
Rotow J, Patel J, Hanley M, et al. Combination osimertinib plus selpercatinib for EGFR mutant non-small cell lung cancer (NSCLC) with acquired RET fusions. J Thoracic Oncol, 2021, 16(3S): S230.
McCoach CE, Le AT, Gowan K, et al. Resistance mechanisms to targeted therapies in ROS1+ and ALK+ non-small cell lung cancer. Clin Cancer Res, 2018, 24(14): 3334-3347. doi: 10.1158/1078-0432.CCR-17-2452
Piotrowska Z, Isozaki H, Lennerz JK, et al. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov, 2018, 8(12): 1529-1539. doi: 10.1158/2159-8290.CD-18-1022
Besse B, Felip E, Clifford C, et al. AcceleRET Lung: A phase III study of first-line pralsetinib in patients (pts) with RET-fusion+ advanced/metastatic non-small cell lung cancer (NSCLC). J Clin Oncol, 2020, 38(15_suppl): TPS9633-TPS9633. doi: 10.1200/JCO.2020.38.15_suppl.TPS9633
Solomon BJ, Zhou CC, Drilon A, et al. Phase III study of selpercatinib versus chemotherapy ± pembrolizumab in untreated RET positive non-small-cell lung cancer. Future Oncol, 2021, 17(7): 763-773. doi: 10.2217/fon-2020-0935
Cho BC, Piotrowska Z, Le X, et al. ORCHARD: A biomarker-directed phase 2 platform study in pts with advanced EGFR mNSCLC progressing on first-line osimertinib. J Thorac Oncol, 2021, 16(35): S598.
Drilon A, Rogers E, Zhai D, et al. TPX-0046 is a novel and potent RET/SRC inhibitor for retdriven cancers. Ann Oncol, 2019, 30 (suppl_5): v159-v193. doi: 10.1093/annonc/mdz244
Schoffski P, Aftimos PG, Massard C, et al. A phase I study of BOS172738 in patients with advanced solid tumors with RET gene alterations including non-small cell lung cancer and medullary thyroid cancer. J Clin Oncol, 2019, 37(15_suppl): TPS3162-TPS3162. doi: 10.1200/JCO.2019.37.15_suppl.TPS3162
Drilon A, Fu S, Patel MR, et al. A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105. Cancer Discov, 2019, 9(3): 384-395. doi: 10.1158/2159-8290.CD-18-0839
Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangzhou 510080, China
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
转染重排(rearranged during transfection, RET)融合阳性发生于0.7%-2%的非小细胞肺癌(non-small cell lung cancer, NSCLC)。RET基因与其他结构域之间的融合代表了NSCLC独特的生物学和临床病理学亚型。近些年以来,RET融合阳性晚期NSCLC治疗领域取得了重要进展。传统化疗能够带来一定的临床获益。在靶向药物临床应用之前或不适用的情况下,以铂类为基础的系统性化疗方案是患者初始治疗选择。免疫治疗在RET融合阳性人群中的报告数据较少且通常结果较差,不推荐免疫单药或免疫联合化疗方案作为这类患者的系统性治疗。多靶点激酶抑制剂在这类人群中的重新应用能够取得一定的治疗反应,目前仅卡博替尼和凡德他尼推荐在有限条件下作为初始或后续治疗。然而,依然存在不能满足的临床需求。普拉替尼(Pralsetinib)和塞尔帕替尼(Selpercatinib)作为RET选择性酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI),显著改善了RET融合阳性NSCLC患者生存及预后。普拉替尼和塞尔帕替尼已确立成为这类患者一线或后续治疗的首选方案。与其他TKI治疗时观察到的类似,RET靶向抑制治疗也会导致耐药问题,而获得性耐药的出现将影响治疗的远期有效性,并限制后续的药物选择。因此,本文将围绕RET融合阳性晚期NSCLC治疗进展进行综述。
Rearranged during transfection (RET) fusions are found in 0.7% to 2% of non-small cell lung cancer (NSCLC). Fusions between RET gene and other domains represent the distinct biological and clinicopathological subtypes of NSCLC. Recent years have witnessed the remarkable advancement of RET fusion-positive advanced NSCLC therapy. Conventional chemotherapy produced moderate clinical benefits. Prior to the introduction of targeted therapy or in the context of unavailability, platinum-based systemic regimens are initial therapy options. Immunotherapy predicted minimal response in the presence of RET fusions while currently available data have been scarce, and the single-agent immunotherapy or in combination with chemotherapy regimens are not recommended as initial systemic therapy in this population. The repurpose of multi-target kinase inhibitors in patients with RET fusion-positive NSCLC showed encouraging therapeutic activity, with only cabozantinib and vandetanib being recommended as initial or subsequent options under certain circumstances. However, there are still unmet clinical needs. Pralsetinib and selpercatinib have been developed as tyrosine kinase inhibitors (TKI) selectively targeting RET variation of fusions or mutations, and both agents significantly improved the prognosis of patients with RET fusion-positive NSCLC. Pralsetinib and selpercatinib have been established as preferred first-line therapy or subsequent therapy options. As observed with other TKIs treatment, resistance has also been associated with RET targeted inhibition, and the acquired resistance eventually affect the long-term therapeutic effectiveness, leading to limited subsequent treatment options. Therefore, it is essential to identify resistance mechanisms to TKI in RET fusion-positive advanced NSCLC to help reveal and establish new strategies to overcome resistance. Here, we review the advances in the treatment of RET fusion-positive advanced NSCLC.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer