Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Since the advent of metal–organic frameworks (MOFs), researchers have paid extensive attention to MOFs due to their determined structural composition, controllable pore size, and diverse physical and chemical properties. Photocatalysis, as a significant application of MOFs catalysts, has developed rapidly in recent years and become a research hotspot continuously. Various methods and approaches to construct and modify MOFs and their derivatives can not only affect the structure and morphology, but also largely determine their properties. Herein, we summarize the advanced synthesis of MOFs-based materials in the field of the photocatalytic decomposition of water to produce hydrogen in the recent three years. The main contents include the overview of the novel synthesis strategies in four aspects: internal modification and structure optimization of MOFs materials, MOFs/semiconductor composites, MOFs/COFs-based hybrids, and MOFs-derived materials. In addition, the problems and challenges faced in this direction and the future development goals were also discussed. We hope this review will help deepen the reader’s understanding and promote continued high-quality development in this field.

Details

Title
The Advanced Synthesis of MOFs-Based Materials in Photocatalytic HER in Recent Three Years
Author
Zhang, Hao 1 ; Cha, Li 1 ; Yang, Li 1 ; Pang, Jiandong 1 ; Bu, Xianhe 2 

 School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China 
 School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China 
First page
1350
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734609092
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.