You may have access to the free features available through My Research. You can save searches, save documents, create alerts and more. Please log in through your library or institution to check if you have access.
You may have access to different export options including Google Drive and Microsoft OneDrive and citation management tools like RefWorks and EasyBib. Try logging in through your library or institution to get access to these tools.
ReferencesBan, N.,
J.Schmidli, and
C.Schär (2014), Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations, J. Geophys. Res. Atmos., 119, 7889–7907, doi:10.1002/2014JD021478.
Bardossy, A., and
E. J.Plate (1992), Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 1247–1259, doi:10.1029/91WR02589.
Bell, T. (1987), A space-time stochastic model of rainfall for satellite remote-sensing studies, J. Geophys. Res., 92(D8), 9631–9643, doi:10.1029/JD092iD08p09631.
Bonan, G. (2002), Ecological Climatology: Concept and Applications, Cambridge Univ. Press, New York.
Bovard, B. D.,
P. S.Curtis,
C. S.Vogel,
H.-B.Su, and
H. P.Schmid (2005), Environmental controls on sap flow in a northern hardwood forest, Tree Physiol., 25, 31–38, doi:10.1093/treephys/25.1.31.
Box, G., and
M.Jekins (1970), Time Series Analysis, Forecasting and Control, Holden-Day, San Fransisco, Calif.
Box, G. E. P.,
G. M.Jenkins, and
G. C.Reinsel (2008), Linear Stationary Models, pp. 47–91, John Wiley, Hoboken, N. J., doi:10.1002/9781118619193.ch3.
Bracewell, R. (2000), The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill, San Fransisco, Calif.
Burlando, M.,
L.Carassale,
E.Georgieva,
C. F.Ratto, and
G.Solari (2007), A simple and efficient procedure for the numerical simulation of wind fields in complex terrain, Boundary Layer Meteorol., 125(3), 417–439, doi:10.1007/s10546-007-9196-3.
Caracciolo, D.,
L. V.Noto,
E.Istanbulluoglu,
S.Fatichi, and
X.Zhou (2014), Climate change and ecotone boundaries: Insights from a cellular automata ecohydrology model in a mediterranean catchment with topography controlled vegetation patterns, Adv. Water Resour., 73, 159–175, doi:10.1016/j.advwatres.2014.08.001.
Chaiwiwatworakul, P., and
S.Chirarattananon (2004), An investigation of atmospheric turbidity of Thai sky, Energy Buildings, 36, 650–659, doi:10.1016/j.enbuild.2004.01.032.
Chambers, M. (1995), The simulation of random vector time series with given spectrum, Math. Comput. Modell., 22(2), 1–6.
Chen, Y.,
A.Hall, and
K. N.Liou (2006), Application of three-dimensional solar radiative transfer to mountains, J. Geophys. Res., 111, D21111, doi:10.1029/2006JD007163.
Chorti, A., and
D.Hristopulos (2008), Nonparametric identification of anisotropic (elliptic) correlations in spatially distributed data sets, IEEE Trans. Signal Process., 56(10), 4738–4751, doi:10.1109/TSP.2008.924144.
Chung, U.,
H.Seo,
K.Hwang,
B.Hwang,
J.Choi,
J.Lee, and
J.Yun (2006), Minimum temperature mapping over complex terrain by estimating cold air accumulation potential, Agric. For. Meteorol., 137(12), 15–24, doi:10.1016/j.agrformet.2005.12.011.
Collins, D. B. G.,
R. L.Bras, and
G. E.Tucker (2004), Modeling the effects of vegetation-erosion coupling on landscape evolution, J. Geophys. Res., 109, F03004, doi:10.1029/2003JF000028.
Coulthard, T. J., and
C. J.Skinner (2016), The sensitivity of landscape evolution models to spatial and temporal rainfall resolution, Earth Surf. Dyn., 4(3), 757–771, doi:10.5194/esurf-4-757-2016.
Curtis,D. C., and
P. S.Eagleson (1982), Constrained stochastic climate simulation, Tech. Rep. 274, Mass. Inst. of Technol. Dep. of Civ. and Environ. Eng. Ralph M. Parsons Lab., Cambridge, Mass.
Dai, A.,
K. E.Trenberth, and
T. R.Karl (1999), Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range, J. Clim., 12(8), 2451–2473, doi:10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.
Demarta, S., and
A. J.McNeil (2007), The t Copula and related copulas, Int. Stat. Rev., 73(1), 111–129, doi:10.1111/j.1751-5823.2005.tb00254.x.
Deser, C.,
A.Phillips,
V.Bourdette, and
H.Teng (2012), Uncertainty in climate change projections: The role of internal variability, Clim. Dyn., 38(3), 527–546, doi:10.1007/s00382-010-0977-x.
Dingman, S. L. (1994), Physical Hydrology, Prentice Hall, Long Grove, Ill.
Dozier, J., and
J.Frew (1990), Rapid calculation of terrain parameters for radiation modeling from digital elevation data, IEEE Trans. Geosci. Remote Sens., 28, 963–969, doi:10.1109/36.58986.
Dubayah, R., and
S.Loechel (1997), Modeling topographic solar radiation using GOES data, J. Appl. Meteorol., 36, 141–154, doi:10.1175/1520-0450(1997)036<0141:MTSRUG>2.0.CO;2.
Dubrovský, M.,
J.Buchtele, and
Z.Žalud (2004), High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling, Clim. Change, 63, 145–179, doi:10.1023/B:CLIM.0000018504.99914.60.
Eagleson, P. S. (2002), Ecohydrology: Darwinian Expression of Vegetation Form and Function, Cambridge Univ. Press, Cambridge, U. K.
Embrechts, P.,
C.Klüppelberg, and
T.Mikosch (1997), Modelling Extremal Events: For Insurance and Finance, Springer, New York.
Entekhabi, D.,
I.Rodriguez-Iturbe, and
P. S.Eagleson (1989), Probabilistic representation of the temporal rainfall process by a modified Neyman-Scott rectangular pulses model: Parameter estimation and validation, Water Resour. Res., 25(2), 295–302, doi:10.1029/WR025i002p00295.
Fatichi, S., and
V. Y.Ivanov (2014), Interannual variability of evapotranspiration and vegetation productivity, Water Resour. Res., 50, 3275–3294, doi:10.1002/2013WR015044.
Fatichi, S.,
V. Y.Ivanov, and
E.Caporali (2011), Simulation of future climate scenarios with a weather generator, Adv. Water Resour., 34(4), 448–467, doi:10.1016/j.advwatres.2010.12.013.
Fatichi, S.,
V. Y.Ivanov, and
E.Caporali (2013), Assessment of a stochastic downscaling methodology in generating an ensemble of hourly future climate time series, Clim. Dyn., 40(7), 1841–1861, doi:10.1007/s00382-012-1627-2.
Fatichi, S.,
S.Rimkus,
P.Burlando,
R.Bordoy, and
P.Molnar (2015), High-resolution distributed analysis of climate and anthropogenic changes on the hydrology of an alpine catchment, J. Hydrol., 525, 362–382, doi:10.1016/j.jhydrol.2015.03.036.
Fatichi, S.,
V. Y.Ivanov,
A.Paschalis,
N.Peleg,
P.Molnar,
S.Rimkus,
J.Kim,
P.Burlando, and
E.Caporali (2016), Uncertainty partition challenges the predictability of vital details of climate change, Earth's Future, 4(5), 240–251, doi:10.1002/2015EF000336.
Fowler, H. J.,
C. G.Kilsby, and
P. E.O'Connel (2000), A stochastic rainfall model for the assessment of regional water resource systems under changed climatic conditions, Hydrol. Earth Syst. Sci., 4(2), 263–282, doi:10.5194/hess-4-263-2000.
Fowler, H. J.,
S.Blenkinsop, and
C.Tebaldi (2007), Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, doi:10.1002/joc.1556.
Furrer, E. M., and
R. W.Katz (2008), Improving the simulation of extreme precipitation events by stochastic weather generators, Water Resour. Res., 44, W12439, doi:10.1029/2008WR007316.
Francipane, A.,
S.Fatichi,
V. Y.Ivanov, and
L. V.Noto (2015), Stochastic assessment of climate impacts on hydrology and geomorphology of semiarid headwater basins using a physically based model, J. Geophys. Res. Earth Surf., 120, 507–533, doi:10.1002/2014JF003232.
Frei, C. (2014), Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean distances, Int. J. Climatol., 34(5), 1585–1605, doi:10.1002/joc.3786.
Frei, C., and
C.Schär (1998), A precipitation climatology of the Alps from high-resolution rain-gauge observations, Int. J. Climatol., 18(8), 873–900, doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.
Frigo, M., and
S. G.Johnson (1998), FFTW: An adaptive software architecture for the FFT, Acoust. Speech Signal Process., 3, 1381–1384, doi:10.1109/ICASSP.1998.681704.
Gabella, M.,
M.Bolliger,
U.Germann, and
G.Perona (2005), Large sample evaluation of cumulative rainfall amounts in the alps using a network of three radars, Atmos. Res., 77(14), 256–268, doi:10.1016/j.atmosres.2004.10.014.
Gabriel, K. R., and
J.Neumann (1962), A Markov chain model for daily rainfall occurrence at Tel Aviv, Q. J. R. Meteorol. Soc., 88(375), 90–95, doi:10.1002/qj.49708837511.
Georgieva, E.,
E.Canepa,
A.Mazzino, and
C.Ratto (2003), Winds Release 4.2 User Guide, Dep. of Phys., Univ. of Genova, Genova, Italy.
Germann, U.,
G.Galli,
M.Boscacci, and
M.Bolliger (2006), Radar precipitation measurement in a mountainous region, Q. J. R. Meteorol. Soc., 132(618), 1669–1692, doi:10.1256/qj.05.190.
Gneiting, T. (2010), Matérn cross-covariance functions for multivariate random fields, J. Am. Stat. Assoc., 105(491), 1167–1177, doi:10.1198/jasa.2010.tm09420.
Gueymard, C. A. (1989), A two-band model for the calculation of clear sky solar irradiance, illuminance, and photosynthetically active radiation at the earth's surface, Solar Energy, 43, 253–265, doi:10.1016/0038-092X(89)90113-8.
Gueymard, C. A. (2003), Direct solar transmittance and irradiance predictions with broadband models: Part 1: Detailed theoretical performance assessment, Solar Energy, 74, 355–379, doi:10.1016/S0038-092X(03)00195-6.
Gueymard, C. A. (2004), Corrigendum to “Direct solar transmittance and irradiance predictions with broadband models: Part 1: Detailed theoretical performance assessment,” Solar Energy, 76, 513.
Gueymard, C. A. (2008), REST2: High-performance solar radiation model for cloudless-sky irradiance illuminance and photosynthetically active radiation—Validation with a bechmark dataset, Solar Energy, 82, 272–285, doi:10.1016/j.solener.2007.04.008.
Guillot, G. (1999), Approximation of Sahelian rainfall fields with meta-Gaussian random functions, Stochastic Environ. Res. Risk Assess., 13(1–2), 100–112, doi:10.1007/s004770050034.
Gutmann, E.,
I.Barstad,
M.Clark,
J.Arnold, and
R.Rasmussen (2016), The intermediate complexity atmospheric research model (ICAR), J. Hydrometeorol., 17(3), 957–973, doi:10.1175/JHM-D-15-0155.1.
Gutnisky, D. A., and
K.Josić (2010), Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process, J. Neurophysiol., 103(5), 2912–30, doi:10.1152/jn.00518.2009.
Haberlandt, U.,
A.-D.Ebner von Eschenbach, and
I.Buchwald (2008), A space-time hybrid hourly rainfall model for derived flood frequency analysis, Hydrol. Earth Syst. Sci., 12(6), 1353–1367, doi:10.5194/hess-12-1353-2008.
Hammer, A.,
D.Heinemann,
C.Hoyer,
R.Kuhlemann,
E.Lorenz,
R.Muller, and
H. G.Beyer (2003), Solar energy assessment using remote sensing technologies, Remote Sens. Environ., 86(3), 423–432, doi:10.1016/S0034-4257(03)00083-X.
Hansen, J. W., and
T.Mavromatis (2001), Correcting low-frequency variability bias in stochastic weather generators, Agric. For. Meteorol., 109, 297–310, doi:10.1016/S0168-1923(01)00271-4.
Hayhoe, H. N. (2000), Improvements of stochastic weather data generators for diverse climates, Clim. Res., 14(2), 75–87, doi:10.3354/cr014075.
Hoffmann, H., et al. (2015), Variability of effects of spatial climate data aggregation on regional yield simulation by crop models, Clim. Res., 65, 53–69, doi:10.3354/cr01326.[10.3354/cr01326]
Holben, B. N., et al. (2001), An emerging ground-based aerosol climatology: Aerosol optical depth from aeronet, J. Geophys. Res., 106(D11), 12,067–12,097, doi:10.1029/2001JD900014.
Hutchinson, M. F. (1995), Stochastic space-time weather models from ground-based data, Agric. For. Meteorol., 73(3), 237–264, doi:10.1016/0168-1923(94)05077-J.
Ingold, T.,
C.Mtzler,
N.Kmpfer, and
A.Heimo (2001), Aerosol optical depth measurements by means of a sun photometer network in switzerland, J. Geophys. Res., 106(D21), 27,537–27,554, doi:10.1029/2000JD000088.
Iqbal, M. (1983), An Introduction to Solar Radiation, Academic, Toronto, Canada.
Ivanov, V. Y.,
R. L.Bras, and
D. C.Curtis (2007), A weather generator for hydrological, ecological, and agricultural applications, Water Resour. Res., 43, W10406, doi:10.1029/2006WR005364.
Johnson, N. L. (1949), Systems of frequency curves generated by methods of translation, Biometrika, 36(1/2), 149–176, doi:10.2307/2332539.
Jones, P. D.,
C. G.Kilsby,
C.Harpham,
V.Glenis, and
A.Burton (2009), UK Climate Projections Science Report: Projections of Future Daily Climate for the UK From the Weather Generator, Met Office, Exter, U. K.
Jones, P. G., and
P. K.Thornton (2000), Marksim: Software to generate daily weather data for Latin America and Africa, Agron. J., 92(3), 445–453, doi:10.2134/agronj2000.923445x.
Kasten, F., and
G.Czeplak (1980), Solar and terrestrial radition dependent on the amount and type of cloud, Solar Energy, 24, 177–189, doi:10.1016/0038-092X(80)90391-6.
Katz, R. W., and
M. B.Parlange (1998), Overdispersion phenomenon in stochastic modeling of precipitation, J. Clim., 11(4), 591–601, doi:10.1175/1520-0442(1998)011<0591:OPISMO>2.0.CO;2.
Kerr, R. A. (2011), Vital details of global warming are eluding forecasters, Science, 334(6053), 173–174, doi:10.1126/science.334.6053.173.
Kim, J., and
V. Y.Ivanov (2015), A holistic, multi-scale dynamic downscaling framework for climate impact assessments and challenges of addressing finer-scale watershed dynamics, J. Hydrol., 522, 645–660, doi:10.1016/j.jhydrol.2015.01.025.
Kim, J.,
V. Y.Ivanov, and
S.Fatichi (2016), Climate change and uncertainty assessment over a hydroclimatic transect of Michigan, Stochastic Environ. Res. Risk Assess., 30(3), 923–944, doi:10.1007/s00477-015-1097-2.
Kleiber, W.,
R. W.Katz, and
B.Rajagopalan (2012), Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes, Water Resour. Res., 48, W01523, doi:10.1029/2011WR011105.
Kopp, G., and
J. L.Lean (2011), A new, lower value of total solar irradiance: Evidence and climate significance, Geophys. Res. Lett., 38, L01706, doi:10.1029/2010GL045777.
Kundu, P. K., and
T.Bell (2003), A stochastic model of space-time variability of mesoscale rainfall: Statistics of spatial averages, Water Resour. Res., 39(12), 1328, doi:10.1029/2002WR001802.
Kyznarov, H., and
P.Novk (2009), CELLTRACK—Convective cell tracking algorithm and its use for deriving life cycle characteristics, Atmos. Res., 93(13), 317–327, doi:10.1016/j.atmosres.2008.09.019.
Lalas, D. (1985), Wind energy estimation and siting in complex terrain, Int. J. Solar Energy, 3(2), 43–71, doi:10.1080/01425918508914383.
Lalas, D.,
M.Tombrou, and
M.Petrakis (1988), Comparison of the performance of some numerical wind energy siting codes in rough terrain, in European Community Wind Energy Conference, pp. 110–114, Commission of the European Communities, Luxembourg.
Lang, A., and
J.Potthoff (2011), Fast simulation of Gaussian random fields, Monte Carlo Methods Appl., 17(3), 195–214, doi:10.1515/mcma.2011.009.
LeCam, L. (1961), A stochastic description of precipitation, in Proceedings of Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 3, edited by J.Neyman, pp. 165–176, Univ. of Calif. Press, Berkeley.
Li, L.,
W.Schmid, and
J.Joss (1995), Nowcasting of motion and growth of precipitation with radar over a complex orography, J. Appl. Meteorol., 34(6), 1286–1300, doi:10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2.
Liston, G. E., and
K.Elder (2006), A meteorological distribution system for high-resolution terrestrial modeling (micromet), J. Hydrometeorol., 7(2), 217–234, doi:10.1175/JHM486.1.
Liston, G. E., and
M.Sturm (1998), A snow-transport model for complex terrain, J. Glaciol., 44(148), 498–516, doi:10.3198/1998JoG44-148-498-516.
Liu, C. V., and
W. R.Goodin (1976), An iterative algorithm for objective wind field analysis, Mon. Weather Rev., 104(6), 784–792, doi:10.1175/1520-0493(1976)104<0784:AIAFOW>2.0.CO;2.
Lütkepohl, H. (2005), New Introduction to Multiple Time Series Analysis, Springer Sci. and Bus. Media, Berlin, Heidelberg.
Marty, C.,
R.Philipona,
C.Fröhlich, and
A.Ohmura (2002), Altitude dependence of surface radiation fluxes and cloud forcing in the alps: Results from the alpine surface radiation budget network, Theor. Appl. Climatol., 72(3), 137–155, doi:10.1007/s007040200019.
Mavromatis, T., and
J. W.Hansen (2001), Interannual variability characteristics and simulated crop response of four stochastic weather generators, Agric. For. Meteorol., 109, 283–296, doi:10.1016/S0168-1923(01)00272-6.
McKague, K.,
R.Rudra, and
J.Ogilvie (2003), CLIMGEN—A convenient weather generator tool for Canadian climate stations, paper presented at the Meeting of the CSAE/SCGR Canadian Society for Engineering in Agricultural Food and Biological Systems, Montreal, Quebec, Canada, 6–9 July.
MeteoSwiss (2016), Daily Precipitation (Final Analysis): RhiresD, Switzerland. [Available at http://www.meteoswiss.admin.ch/home/search.subpage.html/en/data/products/2014/raeumliche-daten-niederschlag.html.]
Minville, M.,
F.Brissette, and
R.Leconte (2010), Impacts and uncertainty of climate change on water resource management of the Peribonka River System (Canada), J. Water Resour. Plann. Manage., 136(3), 376–385, doi:10.1061/(ASCE)WR.1943-5452.0000041.
Mohan, M., and
T.Siddiqui (1998), Analysis of various schemes for the estimation of atmospheric stability classification, Atmos. Environ., 32(21), 3775–3781, doi:10.1016/S1352-2310(98)00109-5.
Morgan, E. C.,
M.Lackner,
R. M.Vogel, and
L. G.Baise (2011), Probability distributions for offshore wind speeds, Energy Convers. Manage., 52(1), 15–26, doi:10.1016/j.enconman.2010.06.015.
Neumaier, A., and
T.Schneider (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models, ACM Trans. Math. Software, 27(1), 27–57, doi:10.1145/382043.382304.
Nicks, A. D.,
L. J.Lane, and
G. A.Gander (1995), Weather generator, in USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation, chap. 2, pp. 1–22, USDA-ARS Natl. Soil Erosion Res. Lab., West Lafayette, Ind.
Niemi, T. J.,
J. H. A.Guillaume,
T.Kokkonen,
T. M. T.Hoang, and
A. W.Seed (2016), Role of spatial anisotropy in design storm generation: Experiment and interpretation, Water Resour. Res., 52, 69–89, doi:10.1002/2015WR017521.
Ochoa-Rodriguez, S., et al. (2015), Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation, J. Hydrol., 531(2, SI), 389–407, doi:10.1016/j.jhydrol.2015.05.035.
Olseth, J. A., and
A.Skartveit (1997), Spatial distribution of photosynthetically active radiation over complex topography, Agric. For. Meteorol., 86, 205–214, doi:10.1016/S0168-1923(97)00010-5.
Olseth, J. A.,
A.Skartveit, and
H.Zou (1995), Spatially continuous mapping of solar resources in a complex high latitude topography, Solar Energy, 55(6), 475–485, doi:10.1016/0038-092X(95)00068-3.
Papoulis, A., and
S.Unnikrishna (2002), Probability, Random Variables and Stochastic Processes, 4th ed., McGraw-Hill, New York, N. Y.
Park, J. Y., and
S. J.Kim (2014), Potential impacts of climate change on the reliability of water and hydropower supply from a multipurpose dam in South Korea, J. Am. Water Resour. Assoc., 50(5), 1273–1288, doi:10.1111/jawr.12190.
Parlange, M. B., and
R. W.Katz (2000), An extended version of the Richardson model for simulating daily weather variables, J. Appl. Meteorol., 39, 610–622, doi:10.1175/1520-0450-39.5.610.
Paschalis, A. (2013), Modelling the space-time structure of precipitation and its impact on basin response, PhD thesis, Diss., Eidg. Tech. Hochsch., ETH Zürich, Zürich, Switzerland.
Paschalis, A.,
P.Molnar,
S.Fatichi, and
P.Burlando (2013), A stochastic model for high-resolution space-time precipitation simulation, Water Resour. Res., 49, 8400–8417, doi:10.1002/2013WR014437.
Paschalis, A.,
S.Fatichi,
P.Molnar,
S.Rimkus, and
P.Burlando (2014), On the effects of small scale spacetime variability of rainfall on basin flood response, J. Hydrol., 514, 313–327, doi:10.1016/j.jhydrol.2014.04.014.
Pasquill, F. (1974), Atmospheric Diffusion, Halsted, New York.
Pegram, G. G., and
A. N.Clothier (2001a), High resolution space-time modelling of rainfall: The “String of Beads” model, J. Hydrol., 241, 26–41, doi:10.1016/S0022-1694(00)00373-5.
Pegram, G. G., and
A. N.Clothier (2001b), Downscaling rainfields in space and time, using the String of Beads model in time series mode, Hydrol. Earth Syst. Sci., 5(2), 175–186, doi:10.5194/hess-5-175-2001.
Peleg, N., and
E.Morin (2012), Convective rain cells: Radar-derived spatiotemporal characteristics and synoptic patterns over the eastern Mediterranean, J. Geophys. Res., 117, D15116, doi:10.1029/2011JD017353.
Peleg, N., and
E.Morin (2014), Stochastic convective rain-field simulation using a high-resolution synoptically conditioned weather generator (HiReS-WG), Water Resour. Res., 50, 2124–2139, doi:10.1002/2013WR014836.
Peleg, N.,
E.Shamir,
K. P.Georgakakos, and
E.Morin (2015a), A framework for assessing hydrological regime sensitivity to climate change in a convective rainfall environment: A case study of two medium-sized eastern Mediterranean catchments, Israel, Hydrol. Earth Syst. Sci., 19(1), 567–581, doi:10.5194/hess-19-567-2015.
Peleg, N.,
F.Blumensaat,
S.Fatichi,
P.Paschalis,
P.Molnar, and
P.Burlando (2015b), High-resolution stochastic generation of rainfall for urban hydrological applications, in UrbanRain15: 10th International Workshop on Precipitation in Urban Areas, 1–5 December 2015, Sporthotel Pontresina, Switzerland, edited by P. Molnar and N. Peleg, pp. UR15–UR57, ETH Zürich, Zürich, Switzerland, doi:10.3929/ethz-a-010549004.
Peleg, N.,
F.Marra,
S.Fatichi,
A.Paschalis,
P.Molnar, and
P.Burlando (2016), Spatial variability of extreme rainfall at radar subpixel scale, J. Hydrol., doi:10.1016/j.jhydrol.2016.05.033.
Peleg, N.,
F.Blumensaat,
P.Molnar,
S.Fatichi, and
P.Burlando (2017), Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling, Hydrol. Earth Syst. Sci., 21, 1559–1572, doi:10.5194/hess-21-1559-2017.
Phillips, G. T. (1979), Preliminary user's guide for the NOABL objective analysis code. Special report, 15 June 1977–15 June 1978, Rep. DOE/ET/20280-T1, Sci. Appl., Inc., La Jolla, Calif., doi:10.2172/7080538.
Pickering, N.,
J. W.Hansen,
J.Jones,
C.Wells,
V.Chan, and
D.Godwin (1994), Weatherman: A utility for managing and generating daily weather data, Agron. J., 86(2), 332–337, doi:10.2134/agronj1994.00021962008600020023x.
Prein, A. F., et al. (2015), A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges, Rev. Geophys., 53(2), 323–361, doi:10.1002/2014RG000475.
Price, M. F.,
A. C.Byers,
D. A.Friend,
T.Kohler, and
L. W.Price (2013), Mountain Geography: Physical and Human Dimensions, Univ. of Calif. Press, Oakland, Calif.
Qian, B.,
S.Gameda,
H.Hayhoe,
R.DeJong, and
A.Bootsma (2004), Comparison of LARS-WG and AAFC-WG stochastic weather generators for diverse Canadian climates, Clim. Res., 26(3), 175–191, doi:10.3354/cr026175.
Racsko, P.,
L.Szeidl, and
M.Semenov (1991), A serial approach to local stochastic weather models, Ecol. Modell., 57(1), 27–41, doi:10.1016/0304-3800(91)90053-4.
Ramanathan, V.,
P. J.Crutzen,
J. T.Kiehl, and
D.Rosenfeld (2001), Aerosols, climate, and the hydrological cycle, Science, 294(5549), 2119–2124, doi:10.1126/science.1064034.
Ratto, C.,
R.Festa,
O.Nicora,
R.Mosiello,
A.Ricci,
D.Lalas, and
O.Frumento (1990), Wind field numerical simulations: A new user-friendly code, in 1990 European Community Wind Energy Conference, pp. 10–14, H.S. Stephens, Bedford, U. K.
Ratto, C.,
R.Festa,
C.Romeo,
O.Frumento, and
M.Galluzzi (1994), Mass-consistent models for wind fields over complex terrain: The state of the art, Environ. Software, 9(4), 247–268, doi:10.1016/0266-9838(94)90023-X.
Richardson, C. W. (1981), Stochastic simulation of daily precipitation, temperature, and solar radiation, Water Resour. Res., 17(1), 182–190, doi:10.1029/WR017i001p00182.
Richardson, C. W., and
D. A.Wright (1984), WGEN: A model for generating daily weather variables, Rep. ARS 8, U.S. Dep. of Agric., Agric. Res. Serv., Washington, D. C.
Rienecker, M. M., et al. (2011), Merra: Nasas modern-era retrospective analysis for research and applications, J. Clim., 24(14), 3624–3648, doi:10.1175/JCLI-D-11-00015.1.
Roberts, J. S. (2010), Dew point temperature, in Encyclopedia of Agricultural, Food, and Biological Engineering, edited by D. R.Heldman and C. I.Moraru, chap. 73, pp. 286–291, CRC Press, Boca Raton, Fla, doi:10.1081/E-EAFE2-120045576.
Robertson, A.,
J.Overpeck,
D.Rind,
E.Mosley-Thompson,
G.Zielinski,
J.Lean,
D.Koch,
J.Penner,
I.Tegen, and
R.Healy (2001), Hypothesized climate forcing time series for the last 500 years, J. Geophys. Res., 106(D14), 14,783–14,803, doi:10.1029/2000JD900469.
Rockel, B.,
A.Will, and
A.Hense (2008), The regional climate model COSMO-CLM (CCLM), Meteorol. Z., 17(4), 347–348, doi:10.1127/0941-2948/2008/0309.
Russell, P. B., et al. (2002), Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments, J. Atmos. Sci., 59, 609–619, doi:10.1175/1520-0469(2002)059<0609:COASSA>2.0.CO;2.
Schlabing, D.,
M.Frassl,
M.Eder,
K.Rinke, and
A.Brdossy (2014), Use of a weather generator for simulating climate change effects on ecosystems: A case study on Lake Constance, Environ. Modell. Software, 61, 326–338, doi:10.1016/j.envsoft.2014.06.028.
Schleiss, M.,
J.Jaffrain, and
A.Berne (2012), Stochastic simulation of intermittent DSD fields in time, J. Hydrometeorol., 13(2), 621–637, doi:10.1175/JHM-D-11-018.1.
Schleiss, M. A.,
A.Berne, and
R.Uijlenhoet (2009), Geostatistical simulation of two-dimensional fields of raindrop size distributions at the meso-gamma scale, Water Resour. Res., 45, W07415, doi:10.1029/2008WR007545.
Schneider, T., and
A.Neumaier (2001), Algorithm 808: ARfit—A matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models, ACM Trans. Math. Software, 27(1), 58–65, doi:10.1145/382043.382316.
Schuol, J., and
K.Abbaspour (2007), Using monthly weather statistics to generate daily data in a SWAT model application to West Africa, Ecol. Modell., 201(34), 301–311, doi:10.1016/j.ecolmodel.2006.09.028.
Schwarb, M. (2000), The alpine precipitation climate: Evaluation of a high-resolution analysis scheme using comprehensive rain-gauge data, PhD thesis, dissertation, 131 pp., Swiss Fed. Inst. of Technol., Zürich, Switzerland.
Semenov, M. A. (2006), Using weather generators in crop modelling, in Acta Hortic., 707, 93–100.
Semenov, M. A., and
E. M.Barrow (1997), Use of a stochastic weather generator in the development of climate change scenarios, Clim. Change, 35, 397–414, doi:10.1023/A:1005342632279.
Semenov, M. A., and
E. M.Barrow (2002), LARS-WG, A Stochastic Weather Generator for Use in Climate Impact Studies, Version 3.0. [Available at http://resources.rothamsted.ac.uk/sites/default/files/groups/mas-models/download/LARS-WG-Manual.pdf.]
Semenov, M. A., and
J. R.Porter (1995), Climatic variability and the modelling of crop yields, Agric. For. Meteorol., 73, 265–283, doi:10.1016/0168-1923(94)05078-K.
Sharpley, A. N., and
J. R.Williams (1990), EPIC-erosion/productivity impact calculator: 1. Model documentation, Tech. Bull. 1768, 235 pp., U.S. Dep. of Agric., Washington, D. C.
Skamarock, W. C.,
J. B.Klemp,
J.Dudhia,
D. O.Gill,
D. M.Barker,
W.Wang, and
J. G.Powers (2005), A description of the advanced research WRF version 2, DTIC document, Technical report: NCAR/TN468+STR, NCAR Technical note, National Center for Atmospheric Research, Boulder, Colo.
Slingo, A. (1989), A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46(10), 1419–1427, doi:10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2.
Stephens, G. L. (1978), Radiation profiles in extended water clouds: 2. Parameterization schemes, J. Atmos. Sci., 35(11), 2123–2132, doi:10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2.
Stöckli, R. (2013), The HelioMont surface solar radiation processing, Sci. Rep. 93, 119 pp., MeteoSwiss: Fed. Off. of Meteorol. and Climatol., Switzerland.
Thompson, D. W. J.,
E. A.Barnes,
C.Deser,
W. E.Foust, and
A. S.Phillips (2015), Quantifying the role of internal climate variability in future climate trends, J. Clim., 28(16), 6443–6456, doi:10.1175/JCLI-D-14-00830.1.
Tucker, G. E., and
R. L.Bras (2000), A stochastic approach to modeling the role of rainfall variability in drainage basin evolution, Water Resour. Res., 36(7), 1953–1964, doi:10.1029/2000WR900065.
TVA (1972), Heat and mass transfer between a water surface and the atmosphere, Tech. Rep. 14, Tenn. Valley Auth. Water Resour. Res. Eng. Lab., Norris.
Vrac, M., and
P.Naveau (2007), Stochastic downscaling of precipitation: From dry events to heavy rainfalls, Water Resour. Res., 43, W07402, doi:10.1029/2006WR005308.
Wetterhall, F.,
A.Bárdossy,
D.Chen,
S.Halldin, and
C.-y.Xu (2008), Statistical downscaling of daily precipitation over sweden using gcm output, Theor. Appl. Climatol., 96(1), 95–103, doi:10.1007/s00704-008-0038-0.
Wheater, H.,
R.Chandler,
C.Onof,
V.Isham,
E.Bellone,
C.Yang,
D.Lekkas,
G.Lourmas, and
M.-L.Segond (2005), Spatial-temporal rainfall modelling for flood risk estimation, Stochastic Environ. Res. Risk Assess., 19, 403–416, doi:10.1007/s00477-005-0011-8.
Whiteman, D. (1982), Breakup of temperature inversions in deep mountain valleys: Part I. Observations, J. Appl. Meteorol., 21(3), 270–289, doi:10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2.
Wieringa, J. (1992), Updating the Davenport roughness classification, J. Wind Eng. Ind. Aerodyn., 41(1), 357–368, doi: 10.1016/0167-6105(92)90434-C.
Wieringa, J. (1993), Representative roughness parameters for homogeneous terrain, Boundary Layer Meteorol., 63(4), 323–363, doi:10.1007/BF00705357.
Wilks, D. S. (1999), Interannual variability and extreme-value characteristics of several stochastic daily precipitation models, Agric. For. Meteorol., 93, 153–169, doi:10.1016/S0168-1923(98)00125-7.
Wilks, D. S., and
R. L.Wilby (1999), The weather generation game: A review of stochastic weather models, Prog. Phys. Geogr., 23, 329–357, doi:10.1177/030913339902300302.
Woolhiser, D. A., and
J.Roldn (1982), Stochastic daily precipitation models: 2. A comparison of distributions of amounts, Water Resour. Res., 18(5), 1461–1468, doi:10.1029/WR018i005p01461.
Zilitinkevich, S. S. (1989), Velocity profiles, the resistance law and the dissipation rate of mean flow kinetic energy in a neutrally and stably stratified planetary boundary layer, Boundary Layer Meteorol., 46(4), 367–387, doi:10.1007/BF00172242.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
A new stochastic weather generator, Advanced WEather GENerator for a two-dimensional grid (AWE-GEN-2d) is presented. The model combines physical and stochastic approaches to simulate key meteorological variables at high spatial and temporal resolution: 2 km × 2 km and 5 min for precipitation and cloud cover and 100 m × 100 m and 1 h for near-surface air temperature, solar radiation, vapor pressure, atmospheric pressure, and near-surface wind. The model requires spatially distributed data for the calibration process, which can nowadays be obtained by remote sensing devices (weather radar and satellites), reanalysis data sets and ground stations. AWE-GEN-2d is parsimonious in terms of computational demand and therefore is particularly suitable for studies where exploring internal climatic variability at multiple spatial and temporal scales is fundamental. Applications of the model include models of environmental systems, such as hydrological and geomorphological models, where high-resolution spatial and temporal meteorological forcing is crucial. The weather generator was calibrated and validated for the Engelberg region, an area with complex topography in the Swiss Alps. Model test shows that the climate variables are generated by AWE-GEN-2d with a level of accuracy that is sufficient for many practical applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Longer documents can take a while to translate. Rather than keep you waiting, we have only translated the first few paragraphs. Click the button below if you want to translate the rest of the document.
Details
Title
An advanced stochastic weather generator for simulating 2-D high-resolution climate variables
Author
Peleg, Nadav 1
; Fatichi, Simone 1
; Paschalis, Athanasios 2
; Molnar, Peter 1
; Burlando, Paolo 1
1 Institute of Environmental Engineering, Hydrology and Water Resources Management, ETH Zurich, Zürich, Switzerland
2 Faculty of Engineering and the Environment, University of Southampton, Southampton, UK