Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The discovery of antibiotics was a breakthrough in medicine. However, bacterial defense mechanisms driven by genetic variation resulted in resistance to these compounds relatively quickly. Moreover, new classes of antibiotics have not been developed for 30 years. Within the European Union, the EU Parliament and Council Regulation No. 2019/6, which concerns veterinary medicinal products, is currently in force. The current goal is to reduce the use of antibiotics and to stop the rise of drug resistance in bacteria because such antimicrobial resistant organisms can be transmitted to humans through the consumption of animal products or direct contact with animals (dogs, cats, etc.). For this reason, there is a growing interest in essential oils (EOs). As natural mixtures (usually of terpenes and their derivatives), they may consist of about 20–60 components with 1–3 dominant component(s). An important feature of EOs is their hydrophobicity, which allows them to react with lipids present in bacterial cell membranes and mitochondria, disrupting the functioning of cell structures and consequently making them more permeable to other components or antibiotics. In the present manuscript, the activity of two EOs (patchouli and tea tree) was assessed, and their interaction with gentamicin and enrofloxacin was studied.

Abstract

In this paper, we show the effect of some essential oils (EOs) on staphylococci, including multidrug-resistant strains isolated from pyoderma in dogs. A total of 13 Staphylococcus pseudintermedius and 8 Staphylococcus aureus strains were studied. To assess the sensitivity of each strain to the antimicrobial agents, two commercial EOs from patchouli (Pogostemon cablin; PcEO) and tea tree (Melaleuca alternifolia; MaEO) as well as two antibiotics (gentamicin and enrofloxacin) were used. The minimum inhibitory concentration (MIC) followed by checkerboards in the combination of EO-antibiotic were performed. Finally, fractional inhibitory concentrations were calculated to determine possible interactions between these antimicrobial agents. PcEO MIC ranged from 0.125 to 0.5 % v/v (1.2–4.8 mg/mL), whereas MaEO MIC was tenfold higher (0.625–5% v/v or 5.6–44.8 mg/mL). Gentamicin appeared to be highly prone to interacting with EOs. Dual synergy (38.1% of cases) and PcEO additive/MaEO synergism (53.4%) were predominantly observed. On the contrary, usually, no interactions between enrofloxacin and EOs were observed (57.1%). Both commercial EOs were characterized by natural composition without artificial adulteration. Patchouli and tea tree oils can be good alternatives for treating severe cases of pyoderma in dogs, especially when dealing with multidrug-resistant strains.

Details

Title
Activity of Patchouli and Tea Tree Essential Oils against Staphylococci Isolated from Pyoderma in Dogs and Their Synergistic Potential with Gentamicin and Enrofloxacin
Author
Szewczuk, Małgorzata Anna 1 ; Zych, Sławomir 2 ; Oster, Nicola 1 ; Karakulska, Jolanta 3 

 Department of Monogastric Animal Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland 
 Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland 
 Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland 
First page
1279
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806447870
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.