It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Kombucha is a healthy beverage which is a final result of tea fermentation by adding a starter culture of the acetic acid bacteria and yeasts. The effect of fermentation conditions on physicochemical, microbiological and sensory properties of Kombucha tea beverages was evaluated with emphasis placed on determining sugars and organic acids content, including pro-health glucuronic acid. Fermentation process was conducted for 10 days at 20°C, 25°C and 30°C. The optimal conditions for the fermentation of Kombucha tea beverages were a temperature of 25°C and a period of 10 days which allowed to retrieve a product with good physicochemical, microbiological and sensory quality. The content of glucuronic acid increased during fermentation at all temperatures reaching the highest, on the 10th day of fermentation at 25°C. It was observed that all beverages were a good overall quality, whereas Kombucha fermented at 25°C was assessed as the highest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences, Warszawa, Poland
2 Department of Food Technology, Warsaw University of Life Sciences, Warszawa, Poland