Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Unmanned Aerial Vehicle (UAV) oblique photography technology has been applied more and more widely for the 3D reconstruction of real-scene models due to its high efficiency and low cost. However, there are many kinds of UAVs with different positioning methods, camera models, and resolutions. To evaluate the performance levels of different types of UAVs in terms of their application to 3D reconstruction, this study took a primary school as the research area and obtained image information through oblique photography of four UAVs of different levels at different flight altitudes. We then conducted a comparative analysis of the accuracy of their 3D reconstruction models. The results show that the 3D reconstruction model of M300RTK has the highest dimensional accuracy, with an error of about 1.1–1.4 m per kilometer, followed by M600Pro (1.5–3.6 m), Inspire2 (1.8–4.2 m), and Phantom4Pro (2.4–5.6 m), but the accuracy of the 3D reconstruction model was found to have no relationship with the flight altitude. At the same time, the resolution of the 3D reconstruction model improved as the flight altitude decreased and the image resolution of the PTZ camera increased. The 3D reconstruction model resolution of the M300RTK + P1 camera was the highest. For every 10 m decrease in flight altitude, the clarity of the 3D reconstruction model improved by 16.81%. The UAV flight time decreased as the UAV flying altitude increased, and the time required for 3D reconstruction of the model increased obviously as the number and resolution of photos increased.

Details

Title
Accuracy Analysis of Three-Dimensional Modeling of a Multi-Level UAV without Control Points
Author
Wang, Dejiang  VIAFID ORCID Logo  ; Shu, Huazhen
First page
592
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670111344
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.