全文文献

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

摘要

With the development of simultaneous positioning and mapping technology in the field of automatic driving, the current simultaneous localization and mapping scheme is no longer limited to a single sensor and is developing in the direction of multi-sensor fusion to enhance the robustness and accuracy. In this study, a localization and mapping scheme named LVI-fusion based on multi-sensor fusion of camera, lidar and IMU is proposed. Different sensors have different data acquisition frequencies. To solve the problem of time inconsistency in heterogeneous sensor data tight coupling, the time alignment module is used to align the time stamp between the lidar, camera and IMU. The image segmentation algorithm is used to segment the dynamic target of the image and extract the static key points. At the same time, the optical flow tracking based on the static key points are carried out and a robust feature point depth recovery model is proposed to realize the robust estimation of feature point depth. Finally, lidar constraint factor, IMU pre-integral constraint factor and visual constraint factor together construct the error equation that is processed with a sliding window-based optimization module. Experimental results show that the proposed algorithm has competitive accuracy and robustness.

索引

标题
LVI-Fusion: A Robust Lidar-Visual-Inertial SLAM Scheme
作者
Liu, Zhenbin  VIAFID ORCID 标识  ; Li, Zengke; Liu, Ao; Shao, Kefan; Guo, Qiang; Wang, Chuanhao
第一页
1524
出版年份
2024
出版日期
2024
出版商
MDPI AG
e-ISSN
20724292
来源类型
学术期刊
出版物语言
English
ProQuest 文档 ID
3053164132
版权
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.