It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
抄録
Random ordinary differential equations (RODEs) describe numerous physical and biological systems whose dynamics contain some level of inherent randomness. These sources of uncertainty enter into dynamics in two forms: (a) externally imposed or internally generated random excitations, i.e., noise, and/or (b) probabilistic representations of uncertain coefficients and initial/boundary data. Such systems admit a distribution of solutions, which is (partially) characterized by the single-time joint probability density function (PDF) of system states. If the random excitations correspond to Gaussian white noise, it is relatively straightforward to derive a closed-form deterministic partial differential equation (PDE) known as the Fokker-Planck (or Kolmogorov’s forward) equation, which governs the evolution of the joint PDF. However, most plausible noise sources are correlated (colored). In this case, the resulting PDF equations require a closure approximation. Via the method of distributions, we propose two methods for closing such equations: (a) modified large-eddy-diffusivity closures, and (b) a data-driven closure relying on sparse regression to learn relevant features. In the realms of nonequilibrium statistical mechanics and computational neuroscience, the closures are tested in a head-to-head comparison against Monte Carlo simulations for colored-noise sources such as Ornstein-Uhlenbeck and sine-Wiener processes. Additionally, the approaches’ algorithmic complexities are thoroughly discussed.
Implementing the method of distributions for high-dimensional systems of RODEs is challenging due to the computational burden of solving the high-dimensional PDE associated with the joint PDF of states. Although recent advancements in numerical integration techniques for high-dimensional PDEs have been made, they are often tailored to specific applications and lack generality for large numbers of states/dimensions. However, for many applications, only a low-dimensional quantity of interest (QoI) from the underlying high-dimensional system is desired. In these cases, it is sufficient to study a reduced-order PDF (RO-PDF) equation, i.e., a low-dimensional PDE for the QoI’s PDF, allowing classical integration techniques to be employed. Moreover, unclosed coefficients in the RO-PDF equations can be rewritten as conditional expectations, which we directly estimate from data via non-parametric regression. When the RODE exhibits strong nonlinearities and/or stiffness, it is usually necessary to supplement the learned reduced-order PDE with a data assimilation method to account for model misspecification that may occur from regression discrepancies. We propose nudging (a.k.a., Newtonian relaxation) and deep neural networks for this task, which are successfully tested for uncertainty quantification of stochastically forced oscillators and transmission failures in electrical power grids.
当社データベースから選択されたコンテンツの「即座」の機械翻訳を要求されました。この機能はあくまでも顧客の便宜を図るために提供されるものであり、決して人間による翻訳を代わるものではありません。 免責条項全文を表示する
ProQuest あるいはその実施許諾者のいずれも、この翻訳に関していかなる表明あるいは保証を行うものではありません。これらの翻訳は、「ありのまま (AS IS)」および「利用可能な状態 (AS AVAILABLE)」として自動的に生成されるものであり、弊社システム中に格納されません。PROQUEST およびその実施許諾者はいかなる可用性の保証、正確性、適時性、完全性、非侵害性、商用性あるいは特定目的への適合性を含んでいるがこれらに限定しないあらゆるおよびすべての明示的あるいは暗示される保証の責任を否定しています。これらの翻訳のご利用はお客様の電子製品ライセンス契約に含まれている各制限条項により制限されており、この翻訳機能性をご使用されることでお客様はこの翻訳機能性のご利用およびこれらから生成されるいかなる出力結果に対するいかなるおよびすべての要求を免責することに同意するものとします。 免責条項全文を非表示にする