Полный текст

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Конспект

With the extensive use and improper treatment of antibiotics, antibiotic pollution in aquaculture wastewater has become increasingly severe. Tetracycline antibiotics have become one of the most commonly used fishery antibiotics. In this study, a Z-scheme heterostructure LaMnO3/g-C3N4 was constructed by the sol–gel method as a photocatalyst to degrade tetracycline, and the influence of anions on the degradation effect was investigated. The LaMnO3/g-C3N4 hybrid was successfully constructed by scanning electron microscope, Fourier transform infrared spectrum, and X-ray diffraction. The results of degradation experiments demonstrated that the maximum tetracycline degradation efficiency of LaMnO3/g-C3N4-10 (LMO/CN-10) was 80%, the removal rate of TC decreased from 71% to 48% when the concentration of chloride ions increased from 0 mM to 10 mM, and the removal rate of TC decreased from 75% to 28% when the concentration of carbonate ions increased from 0 mM to 10 mM. This enhanced photocatalytic activity was attributed to the formation of a Z-scheme structure that promoted the separation of photoinduced electron holes while maintaining its own strong redox ability. Finally, the photocatalytic mechanism was designed based on the free radical trapping experiment, electrochemical impedance, and photoluminescence spectra, providing an opportunity for the construction of a new photocatalyst for the treatment of aquaculture tailwater in the future.

Сведения

Название
Perovskite LaMnO3 Composite Graphene Carbon Nitride g-C3N4 Improves the Photocatalytic Performance of Tetracycline Degradation
Автор
Lu, Ming 1 ; Dong, Jiaqi 1 ; Hu, Mingzhu 1 ; Cheng, Guofeng 2 ; Lv, Juan 1 

 School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China 
 Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, Shanghai 200092, China 
Первая страница
1627
Год публикации
2023
Дата публикации
2023
Издательство
MDPI AG
e-ISSN
20734441
Тип источника
Научный журнал
Язык публикации
English
ИД документа ProQuest
2806608250
Авторское право
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.