Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Biosensors are innovative and cost-effective analytical devices that integrate biological recognition elements (bioreceptors) with transducers to detect specific substances (biomolecules), providing a high sensitivity and specificity for the rapid and accurate point-of-care (POC) quantitative detection of selected biomolecules. In the meat production chain, their application has gained attention due to the increasing demand for enhanced food safety, quality assurance, food fraud detection, and regulatory compliance. Biosensors can detect foodborne pathogens (Salmonella, Campylobacter, Shiga-toxin-producing E. coli/STEC, L. monocytogenes, etc.), spoilage bacteria and indicators, contaminants (pesticides, dioxins, and mycotoxins), antibiotics, antimicrobial resistance genes, hormones (growth promoters and stress hormones), and metabolites (acute-phase proteins as inflammation markers) at different modules along the meat chain, from livestock farming to packaging in the farm-to-fork (F2F) continuum. By providing real-time data from the meat chain, biosensors enable early interventions, reducing the health risks (foodborne outbreaks) associated with contaminated meat/meat products or sub-standard meat products. Recent advancements in micro- and nanotechnology, microfluidics, and wireless communication have further enhanced the sensitivity, specificity, portability, and automation of biosensors, making them suitable for on-site field applications. The integration of biosensors with blockchain and Internet of Things (IoT) systems allows for acquired data integration and management, while their integration with artificial intelligence (AI) and machine learning (ML) enables rapid data processing, analytics, and input for risk assessment by competent authorities. This promotes transparency and traceability within the meat chain, fostering consumer trust and industry accountability. Despite biosensors’ promising potential, challenges such as scalability, reliability associated with the complexity of meat matrices, and regulatory approval are still the main challenges. This review provides a broad overview of the most relevant aspects of current state-of-the-art biosensors’ development, challenges, and opportunities for prospective applications and their regular use in meat safety and quality monitoring, clarifying further perspectives.

Details

Title
Recent Advances in Biosensor Technologies for Meat Production Chain
Author
Nastasijevic, Ivan 1   VIAFID ORCID Logo  ; Kundacina, Ivana 2   VIAFID ORCID Logo  ; Jaric, Stefan 2   VIAFID ORCID Logo  ; Pavlovic, Zoran 2 ; Radovic, Marko 2 ; Radonic, Vasa 2   VIAFID ORCID Logo 

 Institute of Meat Hygiene and Technology, Kacanskog 13, 11000 Belgrade, Serbia 
 University of Novi Sad, Biosense Institute, Dr Zorana Djindjica 1a, 21000 Novi Sad, Serbia; [email protected] (I.K.); [email protected] (S.J.); [email protected] (Z.P.); [email protected] (M.R.); [email protected] (V.R.) 
First page
744
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3176386929
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.