Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Land use patterns significantly influence the quantity and composition of litter in the soil humus layers, thereby affecting the dynamics of soil organic carbon. However, the differences in labile organic carbon fractions and the carbon sequestration index under different land use patterns, as well as their impact on soil carbon storage in the humus layers of mollisols—without migration loss and soil erosion—remain unclear. Labile organic carbon is classified into fractions such as dissolved organic carbon, easily oxidized carbon, particulate organic carbon, and microbial biomass carbon, which are identified through different chemical extraction methods. This study investigates the impact of long-term land use patterns on organic carbon dynamics, organic carbon pools, KOS, and CPMI in mollisols across five treatments: SC (continuous soybean cultivation), MC (continuous maize cultivation), MSR (maize–soybean rotation), GB (grass belt), and FB (forest belt). It also selects three soil depths (0–20 cm, 20–40 cm, and 40–60 cm) over an 11-year period for analysis. The results indicate that soil organic carbon, labile organic carbon fractions (EOC, POC, DOC, and MBC), and CPMI decrease with soil depth, while KOS increases. Non-tillage treatments enhance SOC accumulation in the humus layers, with FB exhibiting the highest organic carbon content, surpassing GB, MC, SC, and MSR by 22.88%, 52.35%, 60.64%, and 80.12%, respectively. Non-tillage treatments can enhance the accumulation of labile organic carbon fractions, aligning with the observed trends in soil organic carbon, with the FB treatment identified as optimal. Additionally, these treatments can increase labile organic carbon fractions and CPMI, thereby improving soil stability. To minimize SOC loss, land use patterns should encourage the conversion of farmland to grassland and forest, with the FB treatment recommended as the optimal strategy for the protection of mollisols and the sustainable development of these soils over the long term. This approach is significant for understanding the soil carbon cycle, rationally planning land use strategies, and providing a reference for enhancing soil quality and ecosystem carbon sinks.

Details

Title
Effects of Long-Term Land Use Patterns on Labile Organic Carbon Fractions and Carbon Pool Management Index of Mollisols Humus Layers
Author
Xinqu Duo 1   VIAFID ORCID Logo  ; Wu, Jinggui 1 ; Cheng, Wei 2 

 College of Resources and Environment Sciences, Jilin Agricultural University, Changchun 130118, China; [email protected] (X.D.); [email protected] (W.C.) 
 College of Resources and Environment Sciences, Jilin Agricultural University, Changchun 130118, China; [email protected] (X.D.); [email protected] (W.C.); School of Pharmaceutical Engineering, College of Humanities & Information, Changchun University of Technology, Changchun 130122, China 
First page
1006
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3165785552
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.