Full Text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Titanium aluminides, particularly the Ti-48Al-2Cr-2Nb alloy, have drawn significant attention for their potential in high-temperature aerospace and automotive applications due to their exceptional performances and reduced density compared to nickel-based superalloys. However, their intermetallic nature poses challenges such as limited room-temperature ductility and fracture toughness, limiting their widespread application. Additive manufacturing, specifically Electron Beam Melting (EBM), has emerged as a promising method for producing complex-shaped components of titanium aluminides, overcoming challenges associated with conventional production methods. This work investigates the fracture behavior of Ti-48Al-2Cr-2Nb specimens with different microstructures, including duplex and equiaxed, under tensile and high-cycle fatigue at elevated temperatures. Fracture surfaces were analyzed to distinguish between static and dynamic fracture modes. A novel method, employing confocal microscopy acquisitions, is proposed to correlate surface roughness parameters with the causes of failure, offering new insights into the fracture mechanisms of titanium aluminides. The results reveal significant differences in roughness values between the propagation and fracture zones for all the temperatures and microstructure tested. At 650 °C, the crack propagation zone exhibits lower Sq values than the fracture zone, with the fracture zone showing more pronounced roughness, particularly for the equiaxed microstructure. However, at 760 °C, the difference in Sq values between the propagation and fracture zones becomes more pronounced, with a more substantial increase in Sq values in the fracture zone. These findings contribute to understanding fracture behavior in titanium aluminides and provide a predictive framework for assessing structural integrity based on surface characteristics.

Details

Title
Investigating Fracture Behavior in Titanium Aluminides: Surface Roughness as an Indicator of Fracture Mechanisms in Ti-48Al-2Cr-2Nb Alloys
Author
Perna, Alessia Serena 1   VIAFID ORCID Logo  ; Savio, Lorenzo 2 ; Coppola, Michele 2 ; Scherillo, Fabio 1   VIAFID ORCID Logo 

 Department of Chemical, Materials and Industrial Production Engineering, University of Naples ‘Federico II’, 80125 Naples, Italy; [email protected] 
 Avio Aero S.r.l., Via G. Luraghi 20, 80038 Pomigliano D’Arco, Italy; [email protected] (L.S.); [email protected] (M.C.) 
First page
49
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3159551085
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.