It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Objectives: Vibrio cholerae remains a significant public health threat in Africa, with antimicrobial resistance (AMR) complicating treatment. This study leverages whole-genome sequencing (WGS) of V. cholerae isolates from Cote d'Ivoire, Ghana, Zambia and South Africa to assess genomic diversity, AMR profiles, and virulence, demonstrating the utility of WGS for enhanced surveillance within the PulseNet Africa network. Methods: We analysed Vibrio isolates from clinical and environmental sources (2010-2024) using Oxford Nanopore sequencing and hybracter assembly. Phylogenetic analysis, multilocus sequence typing (MLST), virulence and AMR gene detection were performed using Terra, Pathogenwatch, and Cloud Infrastructure for Microbial Bioinformatics (CLMB) platforms, with comparisons against 88 global reference genomes for broader genomic context. Results: Of 79 high-quality assemblies, 67 were confirmed as V. cholerae, with serogroup O1 accounting for the majority (43/67, 67%). ST69 accounted for 60% (40/67) of isolates, with eight sequence types identified overall. Thirty-seven isolates formed novel sub-clades within AFR12 and AFR15 O1 lineages, suggesting local clonal expansions. AMR gene analysis revealed high resistance to trimethoprim (96%) and quinolones (83%), while resistance to azithromycin, rifampicin, and tetracycline remained low (less than or equal to 7%). A significant proportion of the serogroup O1 isolates (41/43, 95%) harboured resistance genes in at least three antibiotic classes. Conclusions: This study highlights significant genetic diversity and AMR prevalence in African V. cholerae isolates, with expanding AFR12 and AFR15 clades in the region. The widespread resistance to trimethoprim and quinolones raises concerns for treatment efficacy, although azithromycin and tetracycline remain viable options. WGS enables precise identification of species and genotyping, reinforcing PulseNet Africa's pivotal role in advancing genomic surveillance and enabling timely public health responses to cholera outbreaks.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
* New file with figures and legends uploaded.
* https://doi.org/10.6084/m9.figshare.27941376.v1
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer