Full Text

Turn on search term navigation

© 2024 Hung et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Kawasaki Disease (KD) is a rare febrile illness affecting infants and young children, potentially leading to coronary artery complications and, in severe cases, mortality if untreated. However, KD is frequently misdiagnosed as a common fever in clinical settings, and the inherent data imbalance further complicates accurate prediction when using traditional machine learning and statistical methods. This paper introduces two advanced approaches to address these challenges, enhancing prediction accuracy and generalizability. The first approach proposes a stacking model termed the Disease Classifier (DC), specifically designed to recognize minority class samples within imbalanced datasets, thereby mitigating the bias commonly observed in traditional models toward the majority class. Secondly, we introduce a combined model, the Disease Classifier with CTGAN (CTGAN-DC), which integrates DC with Conditional Tabular Generative Adversarial Network (CTGAN) technology to improve data balance and predictive performance further. Utilizing CTGAN-based oversampling techniques, this model retains the original data characteristics of KD while expanding data diversity. This effectively balances positive and negative KD samples, significantly reducing model bias toward the majority class and enhancing both predictive accuracy and generalizability. Experimental evaluations indicate substantial performance gains, with the DC and CTGAN-DC models achieving notably higher predictive accuracy than individual machine learning models. Specifically, the DC model achieves sensitivity and specificity rates of 95%, while the CTGAN-DC model achieves 95% sensitivity and 97% specificity, demonstrating superior recognition capability. Furthermore, both models exhibit strong generalizability across diverse KD datasets, particularly the CTGAN-DC model, which surpasses the JAMA model with a 3% increase in sensitivity and a 95% improvement in generalization sensitivity and specificity, effectively resolving the model collapse issue observed in the JAMA model. In sum, the proposed DC and CTGAN-DC architectures demonstrate robust generalizability across multiple KD datasets from various healthcare institutions and significantly outperform other models, including XGBoost. These findings lay a solid foundation for advancing disease prediction in the context of imbalanced medical data.

Details

Title
Enhancing generalization in a Kawasaki Disease prediction model using data augmentation: Cross-validation of patients from two major hospitals in Taiwan
Author
Chuan-Sheng Hung  VIAFID ORCID Logo  ; Chun-Hung, Richard Lin  VIAFID ORCID Logo  ; Jain-Shing, Liu; Shi-Huang, Chen; Tsung-Chi Hung; Tsai, Chih-Min
First page
e0314995
Section
Research Article
Publication year
2024
Publication date
Dec 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3150493631
Copyright
© 2024 Hung et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.