Full Text

Turn on search term navigation

© 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the advancement of deep forgery techniques, particularly propelled by generative adversarial networks (GANs), identifying deepfake faces has become increasingly challenging. Although existing forgery detection methods can identify tampering details within manipulated images, their effectiveness significantly diminishes in complex scenes, especially in low-quality images subjected to compression. To address this issue, we proposed a novel deep face forgery video detection model named Two-Stream Feature Domain Fusion Network (TSFF-Net). This model comprises spatial and frequency domain feature extraction branches, a feature extraction layer, and a Transformer layer. In the feature extraction module, we utilize the Scharr operator to extract edge features from facial images, while also integrating frequency domain information from these images. This combination enhances the model’s ability to detect low-quality deepfake videos. Experimental results demonstrate the superiority of our method, achieving detection accuracies of 97.7%, 91.0%, 98.9%, and 90.0% on the FaceForensics++ dataset for Deepfake, Face2Face, FaceSwap, and NeuralTextures forgeries, respectively. Additionally, our model exhibits promising results in cross-dataset experiments.. The code used in this study is available at: https://github.com/hwZHc/TSFF-Net.git.

Details

Title
TSFF-Net: A deep fake video detection model based on two-stream feature domain fusion
Author
Zhang, Hangchuan  VIAFID ORCID Logo  ; Hu, Caiping  VIAFID ORCID Logo  ; Min, Shiyu  VIAFID ORCID Logo  ; Sui, Hui; Zhou, Guola
First page
e0311366
Section
Research Article
Publication year
2024
Publication date
Dec 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3144310760
Copyright
© 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.