Full Text

Turn on search term navigation

© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Human Machine Interfaces and biomedical prosthetics are advancing rapidly, merging human and machine capabilities. These innovations offer tremendous benefits, but the effectiveness of implantable medical devices (IMDs) hinges on the reliability of their batteries. This article explores the various battery technologies used to power IMDs. The review focuses on the unique characteristics, identifies current challenges and future opportunities in the design and enhancement of batteries for IMDs. The review delves into different battery technologies, emphasizing advancements in electrode materials, biocompatible electrolytes, innovative power delivery systems, and novel energy harvesting techniques. It explores the potential of incorporating new nanomaterials, wireless charging solutions, and bio-energy harvesting methods in battery design. Furthermore, the review discusses recent progress in AI-powered implantable battery health monitoring. The study identifies key challenges in existing battery technologies, such as issues with energy density, cycling stability, and longevity, and points out possible enhancements facilitated by introducing advanced materials and cutting-edge technologies. The review also highlights the promise of AI techniques in improving the health monitoring of implantable batteries. The review highlights the critical need to address the stringent requirements of implantable battery design to drive the advancement of healthcare technologies. By adopting novel materials, innovative charging, and energy harvesting methods, along with AI-driven health monitoring, substantial improvements in implantable battery performance can be achieved, thereby enhancing the reliability and effectiveness of biomedical prosthetics and implantable devices.

Article Highlights

New energy-harvesting techniques could power IMDs without needing frequent battery replacements.

Use of novel nano materials could propel advancements in implantable batteries enabling IMDs last longer and work more efficiently.

AI-powered monitoring predicts battery health, improving the reliability and safety of medical implants.

Details

Title
Navigating the future of healthcare with innovations and challenges in implantable battery technology for biomedical devices
Author
Krishnamoorthy, Umapathi 1 ; Lakshmipathy, Priya 2 ; Ramya, Manohar 3 ; Fayek, Hady H. 4 

 KIT-Kalaignarkarunanidhi Institute of Technology, Department of Biomedical Engineering, Coimbatore, India 
 Sri Eshwar College of Engineering, Department of Electronics and Communication Engineering, Coimbatore, India (ISNI:0000 0004 1788 0913) 
 Manipal Academy of Higher Education, Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal, India (GRID:grid.411639.8) (ISNI:0000 0001 0571 5193) 
 Egyptian Chinese University, Energy and Renewable Energy Engineering Department, Cairo, Egypt (GRID:grid.411639.8) 
Pages
584
Publication year
2024
Publication date
Nov 2024
Publisher
Springer Nature B.V.
ISSN
25233963
e-ISSN
25233971
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3123175399
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.