Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fault segmentation plays a critical role in assessing seismic hazards, particularly in tectonically complex regions. The Laji-Jishi Shan Fault Zone (LJSFZ), located on the northeastern margin of the Tibetan Plateau, is a key structure that accommodates regional tectonic stress. This study integrates geomorphic indices, cross-fault deformation rate profiles, and 3D crustal electrical structure data to analyze the varying levels of tectonic activity across different segments of the LJSFZ. We extracted 160 drainage basins along the strike of the LJSFZ from a 30 m resolution digital elevation model and calculated geomorphic indices, including the hypsometric integral (HI), stream length-gradient index (SL), and channel steepness index (ksn), to assess the variations in tectonic activity intensity along the strike of the LJSFZ. The basins were categorized based on river flow directions to capture potential differences across the fault zone. Our results show that the eastern basins of the LJSFZ exhibit the strongest tectonic activity, demonstrated by significantly higher SL and ksn values compared to other regions. A detailed segmentation analysis along the northern Laji Shan Fault and eastern Jishi Shan Fault identified distinct fault segments characterized by variations in SL and ksn indices. Segments with high SL values (>500) correspond to higher crustal uplift rates (~3 mm/year), while segments with lower SL values exhibit lower uplift rates (~2 mm/year), as confirmed by cross-fault deformation profiles derived from GNSS and InSAR data. This correlation demonstrates that geomorphic indices effectively reflect fault activity intensity. Additionally, 3D crustal electrical structure data further indicate that highly conductive mid- to lower-crustal materials originating from the interior of the Tibetan Plateau are obstructed at segment L3 of the LJSFZ. This obstruction leads to localized intense uplift and enhanced fault activity. These findings suggest that while the regional stress–strain pattern of the northeastern Tibetan Plateau is the primary driver of the segmented activity along the Laji-Jishi Shan belt, the direction of localized crustal flow is a critical factor influencing fault activity segmentation.

Details

Title
Tectonic Activity Analysis of the Laji-Jishi Shan Fault Zone: Insights from Geomorphic Indices and Crustal Deformation Data
Author
Ma, Yujie 1 ; Huang, Weiliang 1 ; Zhang, Jiale 1 ; Wang, Yan 1 ; Yu, Dong 1 ; Pan, Baotian 2 

 College of Geological Engineering and Surveying of Chang’an University, Key Laboratory of Western China Mineral Resources and Geological Engineering, Xi’an 710054, China; [email protected] (Y.M.); [email protected] (J.Z.); [email protected] (Y.W.); [email protected] (D.Y.) 
 College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; [email protected] 
First page
3770
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120744695
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.