Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Layered structures comprising coral sand and gravel have been observed in hydraulic filled foundations in the coral reefs in the South China Sea, leading to anisotropy in their physical and mechanical properties. However, the effect of a layered structure on the strength and deformation of the coral soil foundation remains unclear. In this study, a series of large-scale triaxial compression tests and step-loading tests were carried out on four types of samples, i.e., clean coral sand, clean coral gravel, sand-over-gravel layered sample, and gravel-over-sand layered sample, to investigate the impact of confining pressure and the layered structure on the strength and failure modes of these soils. The results indicate that the stress–strain relationships of all samples predominantly exhibit strain hardening under drained conditions. Under identical confining pressures, the peak strength of clean coral sand is the lowest, while that of coral gravel is the highest. The peak strengths of the two layered samples fall between these extremes, with the gravel-over-sand layered sample exhibiting higher strength. All four samples have similar peak friction angles, slightly exceeding 40°. The difference in peak strength among the four types of samples is attributed to the variations in cohesion, with the cohesion of clean coral gravel being up to four times that of clean sand, and the cohesion of layered samples falling between these two. Both clean sand and clean gravel samples exhibit a bulging phenomenon in the middle, while the layered samples primarily exhibit bulging near the coral gravel layer. In the step-loading tests, the bearing capacity of the layered samples falls between those of clean coral sand and coral gravel, with the gravel-over-sand layered samples demonstrating higher strength. Moreover, the p-s curve of the gravel-over-sand layered samples obtained from the large-scale triaxial apparatus under a confining pressure of 400 kPa resembles that from the plate load tests on the same samples.

Details

Title
Large-Scale Triaxial Test on Mechanical Behavior of Coral Sand Gravel Layered Samples
Author
Tang, Xinyue 1 ; Xin, Dongfeng 2 ; Lei, Xuewen 3 ; Yao, Ting 4 ; Meng, Qingshan 4 ; Liu, Qingbing 5   VIAFID ORCID Logo 

 School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; [email protected] (X.T.); [email protected] (X.L.); State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; [email protected] 
 Huajin Aramco Petrochemical Company Limited, Panjin 124205, China; [email protected] 
 School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; [email protected] (X.T.); [email protected] (X.L.) 
 State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; [email protected] 
 Badong National Observation and Research Station of Geohazards, China University of Geosciences (Wuhan), Wuhan 430074, China; [email protected] 
First page
1784
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120684471
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.