Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Agriculture stands as the cornerstone of Africa’s economy, supporting over 60% of the continent’s labor force. Despite its significance, the quality assessment of agricultural products remains a challenging task, particularly at a large scale, consuming valuable time and resources. The African plum is an agricultural fruit that is widely consumed across West and Central Africa but remains underrepresented in AI research. In this paper, we collected a dataset of 2892 African plum samples from fields in Cameroon representing the first dataset of its kind for training AI models. The dataset contains images of plums annotated with quality grades. We then trained and evaluated various state-of-the-art object detection and image classification models, including YOLOv5, YOLOv8, YOLOv9, Fast R-CNN, Mask R-CNN, VGG-16, DenseNet-121, MobileNet, and ResNet, on this African plum dataset. Our experimentation resulted in mean average precision scores ranging from 88.2% to 89.9% and accuracies between 86% and 91% for the object detection models and the classification models, respectively. We then performed model pruning to reduce model sizes while preserving performance, achieving up to 93.6% mean average precision and 99.09% accuracy after pruning YOLOv5, YOLOv8 and ResNet by 10–30%. We deployed the high-performing YOLOv8 system in a web application, offering an accessible AI-based quality assessment tool tailored for African plums. To the best of our knowledge, this represents the first such solution for assessing this underrepresented fruit, empowering farmers with efficient tools. Our approach integrates agriculture and AI to fill a key gap.

Details

Title
Intelligent Vision System with Pruning and Web Interface for Real-Time Defect Detection on African Plum Surfaces
Author
Fadja, Arnaud Nguembang 1   VIAFID ORCID Logo  ; Sain Rigobert Che 2 ; Atemkemg, Marcellin 3   VIAFID ORCID Logo 

 Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy 
 African Institute for Mathematical Sciences, Limbe P.O. Box 608, Cameroon; [email protected] 
 Department of Mathematics, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; [email protected] 
First page
635
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120658939
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.