Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Herein, we report the preparation of nanocomposites using activated biochar derived from rice husk (RHBC) by doping with a metal–organic framework, namely the zeolitic imidazolate framework (ZIF-8). The morphological and structural characterization of the prepared nanocomposite was performed using SEM, BET, XRD, FTIR, TGA, and UV–Vis spectroscopy. The average particle sizes as observed from SEM micrographs for ZIF-8 and ZIF-8@RHBC were 67 nm and 78 nm, respectively. The BET surface analysis of the ZIF-8@RHBC composite showed a value of 308 m2/g and a pore diameter of about 42.56 A°. The inclusion of RHBC in ZIF-8 resulted in a 4% increase in the optical band gap and a 5% increase in the optical conductivity. The electrochemical properties of this nanocomposite were investigated through cyclic voltammetry, and it was observed that ZIF-8@RHBC showed improved CV curves in comparison to bare ZIF-8. The specific capacitance of ZIF-8@RHBC was significantly enhanced from 348 F/g to 452 F/g at a 1 A/g current density after incorporating ZIF-8 into the RHBC matrix. The formation of a mesoporous structure in the ZIF-8@RHBC composite contributed to the improved diffusion rate at the electrode surface, resulting in excellent electrochemical features in the composite. Furthermore, the EIS studies confirmed the reduced charge transfer resistance and increased conduction at the electrode surface in the case of the ZIF-8@RHBC composite. Owing to the ease of its green synthesis and its excellent structural and morphological features and optical and electrochemical properties, this ZIF@RHBC nanocomposite could represent a novel multifunctional material to be used in optoelectronics and energy storage applications.

Details

Title
Novel Biochar-Modified ZIF-8 Metal–Organic Frameworks as a Potential Material for Optoelectronic and Electrochemical Energy Storage Applications
Author
Al-atawi, Sarah 1 ; Aljohani, Meshari M 2 ; Hamdalla, Taymour A 3 ; Al-Ghamdi, S A 3   VIAFID ORCID Logo  ; Alsharari, Abdulrhman M 3   VIAFID ORCID Logo  ; Khasim, Syed 3 

 Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia 
 Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia 
 Advanced Materials Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia[email protected] (T.A.H.) 
First page
705
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120547793
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.