Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Leaves are the most significant parts of forage crops such as alfalfa. Senescence is the terminal stage of leaf development and is controlled by an integrated myriad of endogenous signals and environmental stimuli. WRKY transcription factors (TFs) play essential roles in regulating leaf senescence; however, only a few studies on the analysis and identification of the WRKY TF family in Medicago Sativa have been reported. In this study, we identified 198 WRKY family members from the alfalfa (M. sativa L.) cultivar ’XinjiangDaye’ using phylogenetic analysis and categorized them into three subfamilies, Groups I, II, and III, based on their structural characteristics. Group II members were further divided into five subclasses. In addition, several hormone- and stress-related cis-acting elements were identified in the promoter regions of MsWRKYs. Furthermore, 14 aging-related MsWRKYs genes from a previous transcriptome in our laboratory were selected for RT-qPCR validation of their expression patterns, and subsequently cloned for overexpression examination. Finally, MsWRKY5, MsWRKY66, MsWRKY92, and MsWRKY141 were confirmed to cause leaf yellowing in Nicotiana benthaminana using a transient expression system. Our findings lay a groundwork for further studies on the mechanism of M. sativa leaf aging and for the creation of new germplasm resources.

Details

Title
Genome-Wide Identification and Analysis of the WRKY Transcription Factor Family Associated with Leaf Senescence in Alfalfa
Author
Peng, Xiaojing 1 ; Hu, Jinning 2 ; Duan, Xiangxue 1   VIAFID ORCID Logo  ; Chai, Maofeng 1 ; Wen, Jiangqi 3   VIAFID ORCID Logo  ; Wang, Zengyu 1 ; Xie, Hongli 1 

 Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China 
 Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China 
 Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA 
First page
2725
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3116695839
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.