Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, we propose a model to forecast container throughput for the Singapore port, one of the busiest ports globally. Accurate forecasting of container throughput is critical for efficient port operations, strategic planning, and maintaining a competitive advantage. Using monthly container throughput data of the Singapore port from 2010 to 2021, we develop a Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) model. For the exogenous variables included in the SARIMAX model, we consider the West Texas Intermediate (WTI) crude oil price and China’s export volume, alongside the impact of the COVID-19 pandemic measured through global confirmed cases. The predictive performance of the SARIMAX model was evaluated against a diverse set of benchmark methods, including the Holt–Winters method, linear regression, LASSO regression, Ridge regression, ECM (Error Correction Mechanism), Support Vector Regressor (SVR), Random Forest, XGBoost, LightGBM, Long Short-Term Memory (LSTM) networks, and Prophet. This comparative analysis was conducted by forecasting container throughput for the year 2022. Results indicated that the SARIMAX model, particularly when incorporating WTI prices and China’s export volume, outperformed other models in terms of forecasting accuracy, such as Mean Absolute Percentage Error (MAPE).

Details

Title
Forecasting Container Throughput of Singapore Port Considering Various Exogenous Variables Based on SARIMAX Models
Author
Geun-Cheol, Lee 1   VIAFID ORCID Logo  ; June-Young, Bang 2   VIAFID ORCID Logo 

 College of Business Administration, Konkuk University, Seoul 05029, Republic of Korea; [email protected] 
 Department of Industrial and Management Engineering, Sungkyul University, Anyang 14097, Republic of Korea 
First page
748
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
25719394
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3110471134
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.