Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The accurate prediction of soil organic carbon (SOC) is important for agriculture and land management. Methods using remote sensing data are helpful for estimating SOC in bare soils. To overcome the challenge of predicting SOC under vegetation cover, this study extracted spectral, radar, and topographic variables from multi-temporal optical satellite images (high-resolution PlanetScope and medium-resolution Sentinel-2), synthetic aperture radar satellite images (Sentinel-1), and digital elevation model, respectively, to estimate SOC content in arable soils in the Wuling Mountain region of Southwest China. These variables were modeled at four different spatial resolutions (3 m, 20 m, 30 m, and 80 m) using the eXtreme Gradient Boosting algorithm. The results showed that modeling resolution, the combination of multi-source remote sensing data, and temporal phases all influenced SOC prediction performance. The models generally yielded better results at a medium (20 m) modeling resolution than at fine (3 m) and coarse (80 m) resolutions. The combination of PlanetScope, Sentinel-2, and topography factors gave satisfactory predictions for dry land (R2 = 0.673, MAE = 0.107%, RMSE = 0.135%). The addition of Sentinel-1 indicators gave the best predictions for paddy field (R2 = 0.699, MAE = 0.114%, RMSE = 0.148%). The values of R2 of the optimal models for paddy field and dry land improved by 36.0% and 33.4%, respectively, compared to that for the entire study area. The optical images in winter played a dominant role in the prediction of SOC for both paddy field and dry land. This study offers valuable insights into effectively modeling soil properties under vegetation cover at various scales using multi-source and multi-temporal remote sensing data.

Details

Title
Spatial Estimation of Soil Organic Carbon Content Utilizing PlanetScope, Sentinel-2, and Sentinel-1 Data
Author
Wang, Ziyu 1 ; Wu, Wei 2 ; Liu, Hongbin 1   VIAFID ORCID Logo 

 College of Resources and Environment, Southwest University, Chongqing 400716, China; forward521@email.swu.edu.cn 
 College of Computer and Information Science, Southwest University, Chongqing 400716, China; ww@swu.edu.cn 
First page
3268
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3104036342
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.